1 |
龚有敏. 四旋翼无人机轨迹跟踪与自主着陆控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
GONG Y M. Research on trajectory tracking and autonomous landing control of four rotor UAV[D]. Harbin: Harbin Institute of Technology, 2017.
|
2 |
BELTRAN-CARBAJAL F , YANEZ-BADILLO H , TAPIA-DLVERA R , et al. On active vibration absorption in motion control of a quadrotor UAV[J]. Mathe-matics, 2022, 10 (2): 235.
|
3 |
LI X H , FANG C , FAN T . Analysis of reflected signal of quad rotor UAV based on model fitting in mobile communication system[J]. Journal of Systems Engineering and Electronics, 2022, 33 (1): 97- 104.
doi: 10.23919/JSEE.2022.000011
|
4 |
宁东方. 无人机自动着陆控制系统的设计与实现研究[D]. 西安: 西北工业大学, 2006.
|
|
NING D F. Design and implementation of automatic landing control system for UAV[D]. Xi'an: Northwestern Polytechnical University, 2006.
|
5 |
JING X D , WANG X F . PSO algorithm tuning PI_PID controller parameters of quad-rotor UAV[J]. Journal of Physics: Conference Series, 2022, 2228, 012017.
doi: 10.1088/1742-6596/2228/1/012017
|
6 |
YU Z Q , ZHANG Y M , JINANG B . PID-type fault-tolerant prescribed performance control of fixed-wing UAV[J]. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1053- 1061.
doi: 10.23919/JSEE.2021.000090
|
7 |
HUANG S B , HUANG J F , CAI Z Q , et al. Adaptive backstepping sliding mode control for quadrotor UAV[J]. Scientific Programming, 2021, 2021, 13.
|
8 |
CHEN J , ZHAO H C . Sliding mode disturbance observer and sliding mode controller for quadrotor UAV[J]. Journal of Phy-sics: Conference Series, 2022, 2296, 012030.
doi: 10.1088/1742-6596/2296/1/012030
|
9 |
KANG B , MIAO Y , LIU F , et al. A second-order sliding mode controller of quad-rotor UAV based on PID sliding mode surface with unbalanced load[J]. Journal of Systems Science & Complexity, 2021, 34, 520- 536.
|
10 |
LI Z X , ZHANG R . Time-varying sliding mode control of missile based on suboptimal method[J]. Journal of Systems Engineering and Electronics, 2021, 32 (3): 700- 710.
doi: 10.23919/JSEE.2021.000060
|
11 |
MNIH V , KAVUKCUOGLU K , SILVER D , et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236
|
12 |
LI Y F , YANG B , YAN L , et al. RETRACTED: energy-aware resource management for uplink non-orthogonal multiple access: multi-agent deep reinforcement learning[J]. Future Generation Computer Systems, 2020, 105, 684- 694.
doi: 10.1016/j.future.2019.12.047
|
13 |
KHAN A , JIANG F , LIU S H , et al. Playing a FPS doom video game with deep visual reinforcement learning[J]. Automatic Control and Computer Sciences, 2019, 53 (3): 214- 222.
doi: 10.3103/S0146411619030052
|
14 |
PI C H , HU K C , CHENG S , et al. Low-level autonomous control and tracking of quadrotor using reinforcement learning[J]. Control Engineering Practice, 2020, 95, 104222.
doi: 10.1016/j.conengprac.2019.104222
|
15 |
LI Y , QIU X H , LIU X D , et al. Deep reinforcement learning and its application in autonomous fitting optimization for attack areas of UCAVs[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 734- 742.
doi: 10.23919/JSEE.2020.000048
|
16 |
LIN J , WANG Y N , MIAO Z Q , et al. Low-complexity control for vision-based landing of quadrotor UAV on unknown moving platform[J]. IEEE Trans.on Industrial Informatics, 2022, 18 (8): 5348- 5358.
doi: 10.1109/TII.2021.3129486
|
17 |
CHANG C W , LO L Y , CHENG H C , et al. Proactive gui-dance for accurate UAV landing on a dynamic platform: a visua -linertial approach[J]. Sensors, 2022, 22 (1): 404.
doi: 10.3390/s22010404
|
18 |
邱鹏瑞, 刘筠, 刘聪. 四旋翼无人机单目视觉自主着陆系统研究[J]. 云南民族大学学报(自然科学版), 2019, 28 (3): 289- 292.
|
|
QIU P R , LIU J , LIU C . Research on monocular vision auto-nomous landing system of four rotor UAV[J]. Journal of Yunnan Nationalities University, 2019, 28 (3): 289- 292.
|
19 |
朱飞翔, 高永, 孟浩. 基于参考轨迹的无人机自主着陆控制系统设计与仿真[J]. 海军航空工程学院学报, 2017, 32 (5): 463- 468.
|
|
ZHU F X , GAO Y , MENG H . Design and simulation of UAV autonomous landing control system based on reference trajectory[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 32 (5): 463- 468.
|
20 |
许陈元, 李春涛. 无人机快速着陆控制律设计及仿真验证[J]. 计算机仿真, 2016, 33 (7): 141- 146.
|
|
XU C Y , LI C T . Design and simulation verification of UAV rapid landing control law[J]. Computer Simulation, 2016, 33 (7): 141- 146.
|
21 |
JOHNSON J D , LI J , CHEN Z . Reinforcement learning: an introduction[J]. Neurocomputing, 2000, 35 (1-4): 205- 206.
doi: 10.1016/S0925-2312(00)00324-6
|
22 |
LOU W J , GUO X . Adaptive trajectory tracking control using reinforcement learning for quadrotor[J]. International Journal of Advanced Robotic Systems, 2016, 13, 679- 709.
|
23 |
宋欣屿, 王英勋, 蔡志浩, 等. 基于深度强化学习的无人机着陆轨迹跟踪控制[J]. 航空科学技术, 2020, 31 (1): 68- 75.
|
|
SONG X Y , WANG Y X , CAI Z H , et al. UAV landing trajectory tracking control based on deep reinforcement learning[J]. Aeronautical Science & Technology, 2020, 31 (1): 68- 75.
|
24 |
裴培, 何绍溟, 王江, 等. 一种深度强化学习制导控制一体化算法[J]. 宇航学报, 2021, 42 (10): 1293- 1304.
|
|
PEI P , HE S M , WANG J , et al. An integrated algorithm of deep reinforcement learning guidance and control[J]. Journal of Astronautics, 2021, 42 (10): 1293- 1304.
|
25 |
ZHANG Y J , HUANG Y J , LIANG K , et al. High-precision modeling and collision simulation of small rotor UAV[J]. Aero-space Science and Technology, 2021, 118, 106977.
|
26 |
KIENINGER S , DONATI L , KELLER B G . Dynamical reweighting methods for Markov models[J]. Current Opinion in Structural Biology, 2020, 61, 124- 131.
|
27 |
LIU Y , CHONG E , PEZESHKI A , et al. Submodular optimization problems and greedy strategies: a survey[J]. Discrete Event Dynamic Systems, 2020, 30, 381- 412.
|
28 |
DOGRU O , CHIPLUNKAR R , HUANG B . Reinforcement learning with constrained uncertain reward function through particle filtering[J]. IEEE Trans.on Industrial Electronics, 2022, 69 (7): 7491- 7499.
|
29 |
GAO X , FANG Y W , WU Y L . Fuzzy Q learning algorithm for dual-aircraft path planning to cooperatively detect targets by passive radars[J]. Journal of Systems Engineering and Electronics, 2013, 24 (5): 800- 810.
|
30 |
GUO J A , WANG Y L , AN H , et al. ⅡDQN: an incentive improved DQN algorithm in EBSN recommender system[J]. Security & Communication Networks, 2022, 2022, 7502248.
|
31 |
SU J J , MA C H , LI S , et al. An AGC dynamic control method based on DQN algorithm[J]. IOP Conference Series: Materials Science and Engineering, 2020, 729 (1): 012009.
|
32 |
MANIATOPOULOS A , MITIANOUDIS N . Learnable leaky ReLU (LeLeLU): an alternative accuracy-optimized activation function[J]. Information, 2021, 12 (12): 513.
|