系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (4): 1164-1176.doi: 10.12305/j.issn.1001-506X.2023.04.25
• 制导、导航与控制 • 上一篇
宋捷1, 鲁祖坤1,*, 刘哲1, 肖志斌1, 党超2, 王芝应3, 孙广富1
收稿日期:
2022-01-20
出版日期:
2023-03-29
发布日期:
2023-03-28
通讯作者:
鲁祖坤
作者简介:
宋捷(1998—), 女, 硕士研究生, 主要研究方向为星基导航与定位技术、卫星导航抗干扰技术Jie SONG1, Zukun LU1,*, Zhe LIU1, Zhibin XIAO1, Chao DANG2, Zhiying WANG3, Guangfu SUN1
Received:
2022-01-20
Online:
2023-03-29
Published:
2023-03-28
Contact:
Zukun LU
摘要:
时域自适应抗干扰是导航对抗领域最常规的抗干扰技术之一, 可以通过自适应算法生成时域滤波器, 在不需要先验信息的前提下应对复杂多变的窄带干扰。随着干扰环境复杂化、干扰手段扩大化, 给传统时域抗干扰带来了高抗干扰性能不足、复杂度过高、测距稳健性不足的难题, 时域抗干扰技术也在导航对抗升级的同时不断改进和发展。介绍了时域抗干扰的基本概念以及经典算法, 对近年来时域抗干扰研究面临的主要问题进行了归纳总结, 并分别从提高算法收敛性、降低硬件复杂度以及提高测距精度3个方面给出了技术发展概述。最后, 根据对已有技术的总结和面临的工程问题, 对未来时域抗干扰技术的发展方向做出了展望。
中图分类号:
宋捷, 鲁祖坤, 刘哲, 肖志斌, 党超, 王芝应, 孙广富. 卫星导航时域自适应抗干扰技术综述[J]. 系统工程与电子技术, 2023, 45(4): 1164-1176.
Jie SONG, Zukun LU, Zhe LIU, Zhibin XIAO, Chao DANG, Zhiying WANG, Guangfu SUN. Review on the time-domain interference suppression of navigation receiver[J]. Systems Engineering and Electronics, 2023, 45(4): 1164-1176.
表1
线性预测算法"
算法 | 关键步骤 | 优点 | 缺点 |
Levinson-Durbin | 可取代矩阵求逆中的大容量计算, 在任何域上都成立 | 参数误差受限于采样间隔; 需要更多样本进行预测; 功率谱受相关函数估计的影响 | |
Burg | 频率分辨率高; 模型稳定; 计算效率高 | 不适用于高信噪比和高阶模型 | |
LMS | 计算简单, 易于实用 | 收敛速度和稳态失调不可兼容 | |
RLS | 与输入统计特性无关; 收敛速度快; 跟踪性能好 | 运算量大; 稳定性差 |
1 | LYU Q S , QIN H L . A general method to mitigate the continuous wave interference and narrowband interference for GNSS receivers[J]. IET Radar, Sonar & Navigation, 2020, 14 (9): 1430- 1435. |
2 |
HUANG L , LU Z K , XIAO Z , et al. Suppression of jammer multipath in GNSS antenna array receiver[J]. Remote Sensing, 2022, 14 (2): 350.
doi: 10.3390/rs14020350 |
3 |
YASYUKEVICH Y V , YASYUKEVICH A S , ASTAFYEVA E I . How modernized and strengthened GPS signals enhance the system performance during solar radio bursts[J]. GPS Solutions, 2021, 25, 46.
doi: 10.1007/s10291-021-01091-5 |
4 | HWANG S S. Adaptive algorithms for a GPS interference suppression receiver and a sparse reconfigurable adaptive filter[D]. Santa Barbara: University of California, 2006. |
5 | FANTE R L , VACCARO J J . Wideband cancellation of interference in a GPS receive array[J]. IEEE Trans.on Aerospace & Electronic Systems, 2000, 36 (2): 549- 564. |
6 |
MA W W , GAO J X , YUAN Y N , et al. Suppression of continuous wave interference in loran-C signal based on sparse optimization using tunable Q-factor wavelet transform and discrete cosine transform[J]. Sensors, 2021, 21 (21): 7153.
doi: 10.3390/s21217153 |
7 | ISSAM S M, ADNANE A, MADIABDESSALAM A. Anti-jamming techniques for aviation GNSS-based navigation systems: survey[C]//Proc. of the IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science, 2020. |
8 |
HAO Z H , ZHAO H Z , SHAO S H , et al. Suppression of time-varying multi-tone interference based on frequency domain interference detection[J]. Wireless Personal Communications, 2014, 75 (2): 1051- 1060.
doi: 10.1007/s11277-013-1407-2 |
9 | WANG J D, PENG J W, XU X M, et al. A single-input narrow-band interference suppression and smoothing algorithm based on LMS filter[C]//Proc. of the IEEE 2nd International Conference on Electronic Information and Communication Technology, 2019: 192-198. |
10 | QIU T S, WANG X Y, TIAN Y S, et al. A system design of real-time narrowband rfi detection and mitigation for Gnss-R receiver[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 5167-5170. |
11 | EDDINE D D, MOHAMED D, ABDDELMALIK T A. An optimal method using wavelet packet denoising for a GPS of an observation satellite[C]//Proc. of the Saudi International Electronics, Communications and Photonics Conference, 2013. |
12 | CHIEN Y, HUANG Y, YANG D, et al. A novel continuous wave interference detectable adaptive notch filter for GPS receivers[C]//Proc. of the IEEE Global Telecommunications Conference GLOBECOM, 2010. |
13 |
KETCHUM J , PROAKIS J . Adaptive algorithms for estimating and suppressing narrow-band interference in PN spread-spectrum systems[J]. IEEE Trans.on Communications, 1982, 30 (5): 913- 924.
doi: 10.1109/TCOM.1982.1095542 |
14 |
VIJAYAN R , POOR H V . Nonlinear techniques for interference suppression in spread-spectrum systems[J]. IEEE Trans.on Communications, 1990, 38 (7): 1060- 1065.
doi: 10.1109/26.57504 |
15 | LI H, HUO Q, ZHENG X, et al. High dynamic GNSS anti-jamming algorithms based on nulling widening and deepening[C]//Proc. of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, 2020: 1562-1568. |
16 |
YANG X , LIU W X , CHEN F Q , et al. Analysis of the effects power-inversion (PI) adaptive algorithm have on GNSS received pseudorange measurement[J]. IEEE Access, 2022, 10, 70242- 70251.
doi: 10.1109/ACCESS.2019.2952886 |
17 |
FAN G T , ZHANG F , RAN D C . An unbiased carrier-phase anti-interference filter based on mirror frequency amplitude compensation[J]. Advances in Space Research, 2021, 67 (2): 806- 811.
doi: 10.1016/j.asr.2020.10.027 |
18 | LU Z K , NIE J W , WAN Y D , et al. Optimal reference element for interference suppression in GNSS antenna arrays under channel mismatch[J]. IET Radar, Sonar & Navigation, 2017, 11 (7): 1161- 1169. |
19 |
JING Z Q . A new method for digital all-pass filter design[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1987, 35 (11): 1557- 1564.
doi: 10.1109/TASSP.1987.1165067 |
20 |
POWELL S R , CHAU P M . A technique for realizing linear phase ⅡR filters[J]. IEEE Trans.on Signal Processing, 1991, 39 (11): 2425- 2435.
doi: 10.1109/78.97998 |
21 | 肖承山. 线性相位ⅡR滤波器的逼近[J]. 电子学报, 1993, 7, 46- 53. |
XIAO C S . Approxomation of linear phase digital filters[J]. Acta Electronica Sinca, 1993, 7, 46- 53. | |
22 | ZHONG W. Linear phase FIR digital filter design using differential evolution algorithms[D]. Canada: University of Windsor, 2017. |
23 | DENG N , SHAO S H , GU G X . Design of linear phase ⅡR filters via optimal Hankel-norm approximation[J]. Control Theory & Applications, 2007, 24 (2): 200- 204. |
24 | RAMANATHAN R , KP S , VIDYAPEETHAM A , et al. A novel methodology for designing linear phase ⅡR filters[J]. International Journal of Recent Trends in Engineering, 2009, 1 (3): 218- 222. |
25 | KONOPACKI J , MOSCIRISKA K . A procedure for quasi-equiripple linear-phase ⅡR filters design[J]. International Journal of Electronics & Telecommunications, 2010, 56 (4): 393- 398. |
26 |
AGRAWAL N , KUMAR A , BAJAJ V . A new design approach for nearly linear phase stable ⅡR filter using fractional derivative[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (2): 527- 538.
doi: 10.1109/JAS.2020.1003054 |
27 | STANCIC G , DURIC M , JOVANOVIC B , et al. A complexity analysis of ⅡR filters with an approximately linear phase[J]. Radioengineering, 2019, 29 (2): 430- 438. |
28 |
WIDROW B , MCCOOL J M , LARIMORE M G , et al. Stationary and nonstationary learning characteristics of the LMS adaptive filter[J]. Proceedings of the IEEE, 1976, 64 (8): 1151- 1162.
doi: 10.1109/PROC.1976.10286 |
29 | CHERN S, SUN C. Linearly constrained RLS algorithm with variable forgetting factor for DS-CDMA system[C]//Proc. of the International Symposium on Intelligent Signal Processing and Communication Systems, 2014: 261-264. |
30 |
LEE L M , WANG H C . An extended Levinson-Durbin algorithm for the analysis of noisy autoregressive process[J]. IEEE Signal Processing Letters, 1996, 3 (1): 13- 15.
doi: 10.1109/97.475824 |
31 | BURG J P. Maximum entropy spectral analysis[D]. San Francisco: Stanford University, 1975. |
32 | DONG H , CHI X F , QU L D , et al. Anti-interference performance of TDCS based on Levinson algorithm of cross spectrum AR model parameter estimation[J]. Journal of Jilin University, 2014, 44 (3): 812- 817. |
33 | MAMMELA A. The performance of adaptive interference suppression filters used in PN spread-spectrum systems[C]//Proc. of the 8th European Conference on Electrotechnics, Conference Proceedings on Area Communication, 1988: 126-129. |
34 | AZMI P , TAVAKKOLI N . Narrow-band interference suppression in CDMA spread-spectrum communication systems using pre-processing based techniques in transform-domain[J]. IEICE Transactions on Communications, 2008, 85 (1): 239- 246. |
35 | KIM D K , PARK P G . Adaptive self-orthogonalizing per-tone decision feedback equalizer for single carrier modulations[J]. IEEE Signal Processing Letters, 2005, 13 (1): 21- 24. |
36 | HUI S, LIM Y. A block adaptive approach for clutter suppression[C]//Proc. of the ICASSP IEEE International Conference on Acoustics, Speech, and Signal Processing, 1985: 1368-1371. |
37 |
HAN M X , SHI T X , CHEN Y . Digital-assisted photonic analog wideband multipath self-interference cancellation[J]. IEEE Photonics Technology Letters, 2022, 34 (5): 299- 302.
doi: 10.1109/LPT.2022.3153336 |
38 |
JI J , LIU Y T , CHEN W , et al. A novel signal design and performance analysis in navcom based on LEO constellation[J]. Sensors, 2021, 21 (24): 8235.
doi: 10.3390/s21248235 |
39 | CHEN F Q, LU Z K, LIU Z, et al. Tracking bias of navigation signal on performance of post-correlation MMSE anti-jamming algorithm[C]//Proc. of the China Satellite Navigation Conference, 2020: 646-655. |
40 | LI X H, CHEN F Q, LU Z K, et al. Overview of anti-jamming technology based on GNSS single-antenna receiver[C]//Proc. of the 3rd International Conference on Geoinformatics and Data Analysis, 2020: 96-104. |
41 |
DOUGLAS S C , MENG T H Y . Normalized data nonlinearities for LMS adaptation[J]. IEEE Trans.on Signal Processing, 1994, 42 (6): 1352- 1365.
doi: 10.1109/78.286952 |
42 |
LOH-MING L , MILSTEIN L . Rejection of narrow-band interference in PN spread-spectrum systems using transversal filters[J]. IEEE Trans.on Communications, 1982, 30 (5): 925- 928.
doi: 10.1109/TCOM.1982.1095543 |
43 |
MASRY E . Closed-form analytical results for the rejection of narrow-band interference in PN spread-spectrum systems-Part Ⅱ: linear interpolation filters[J]. IEEE Trans.on Communications, 1985, 33 (1): 10- 19.
doi: 10.1109/TCOM.1985.1096204 |
44 | 郭向飞. 直扩系统中低复杂度窄带干扰抑制技术研究[D]. 西安: 西安电子科技大学, 2014. |
GUO X F. Research on low-complexity narrow-band interference suppression techniques in direct expansion systems[D]. Xi'an: Xidian University, 2014. | |
45 |
LU Z K , CHEN F Q , XIE Y C , et al. High precision pseudo-range measurement in GNSS anti-jamming antenna array processing[J]. Electronics, 2020, 9 (3): 412.
doi: 10.3390/electronics9030412 |
46 |
KWONG R H , JOHNSTON E W . A variable step size LMS algorithm[J]. IEEE Trans.on Signal Processing, 1992, 40 (7): 1633- 1642.
doi: 10.1109/78.143435 |
47 |
PAZAITIS D I , CONSTANTINIDES A G . A novel kurtosis driven variable step-size adaptive algorithm[J]. IEEE Trans.on Signal Processing, 1999, 47 (3): 864- 872.
doi: 10.1109/78.747793 |
48 |
ABOULNASR T , MAYYAS K . A robust variable step-size LMS-type algorithm: analysis and simulations[J]. IEEE Trans.on Signal Processing, 1997, 45 (3): 631- 639.
doi: 10.1109/78.558478 |
49 | 覃景繁, 韦岗. 基于S型函数的变步长LMS自适应滤波算法[J]. 无线电工程, 1996, (4): 44- 47. |
QIN J F , WEI G . Variable-step LMS adaptive filtering algorithm based on sigmoid function[J]. Radio Engineering, 1996, (4): 44- 47. | |
50 | 罗小东, 贾振红, 王强. 一种新的变步长LMS自适应滤波算法[J]. 电子学报, 2006, (6): 1123- 1126. |
LUO X D , JIA Z H , WANG Q . A new variable step-size LMS adaptive filtering algorithm[J]. Acta Electronica Sinca, 2006, (6): 1123- 1126. | |
51 | 刘宪爽, 吴华明, 肖文波, 等. 改进的双Sigmoid函数变步长自适应算法及在OCT中的应用[J]. 电子学报, 2019, 47 (1): 234- 240. |
LIU X S , WU H M , XIAO W B , et al. An improved double sigmoid function variable step adaptive algorithm and its application in OCT[J]. Acta Electronica Sinca, 2019, 47 (1): 234- 240. | |
52 | 邓江波, 侯新国, 吴正国. 基于箕舌线的变步长LMS自适应算法[J]. 数据采集与处理, 2004, 3, 282- 285. |
DENG J B , HOU X G , WU Z G . Variable-step LMS adaptive algorithm based on Kei Tong line[J]. Journal of Data Acquisition and Processing, 2004, 3, 282- 285. | |
53 |
张中华, 张端金. 一种新的变步长LMS自适应滤波算法及性能分析[J]. 系统工程与电子技术, 2009, 31 (9): 2238- 2241.
doi: 10.3321/j.issn:1001-506X.2009.09.046 |
ZHANG Z H , ZHANG R J . A new variable-step LMS adaptive filtering algorithm and performance analysis[J]. Systems Engineering and Electronics, 2009, 31 (9): 2238- 2241.
doi: 10.3321/j.issn:1001-506X.2009.09.046 |
|
54 |
胡春娇, 杨顺. 基于箕舌线变步长LMS算法的分析与改进[J]. 计算机仿真, 2010, 27 (11): 359- 362.
doi: 10.3969/j.issn.1006-9348.2010.11.090 |
HU C J , YANG S . Analysis and improvement of variable step LMS algorithm based on Kei Tong line[J]. Computer Simulation, 2010, 27 (11): 359- 362.
doi: 10.3969/j.issn.1006-9348.2010.11.090 |
|
55 | 路翠华, 王瑛, 徐君明. 基于零均值特性的箕舌线变步长LMS算法[J]. 海军航空工程学院学报, 2013, 28 (5): 485- 488. |
LU C H , WANG Y , XU J M . Variable-step LMS algorithm based on zero mean characteristic for Kei Tong line[J]. Journal of Naval Aeronautical Engineering Institute, 2013, 28 (5): 485- 488. | |
56 | 路翠华, 李国林, 周洪庆, 等. 基于相关特性的改进箕舌线变步长LMS算法[J]. 数据采集与处理, 2015, 30 (4): 896- 901. |
LU C H , LI G L , ZHOU H Q , et al. An improved LMS algorithm based on correlation characteristics with variable step size for Kei Tong line[J]. Data Acquisition and Processing, 2015, 30 (4): 896- 901. | |
57 | 章坚武, 余皓, 章谦骅. 改进的双曲正切函数的变步长LMS算法[J]. 通信学报, 2020, 41 (11): 116- 123. |
ZHANG J W , YU H , ZHANG Q H . Improved variable-step LMS algorithm for hyperbolic tangent function[J]. Journal on Communications, 2020, 41 (11): 116- 123. | |
58 |
ANG W P , FARHANG-BOROUJENY B . A new class of gradient adaptive step-size LMS algorithms[J]. IEEE Trans.on Signal Processing, 2001, 49 (4): 805- 810.
doi: 10.1109/78.912925 |
59 | ZHANG Y G, LI N, CHAMBERS J A. New gradient based variable step-size LMS algorithm[C]//Proc. of the International Conference on Signal Processing, 2006: 415-418. |
60 | 高丽, 韩彦博. 基于加权平均梯度的变步长LMS算法[J]. 吉林师范大学学报(自然科学版), 2018, 39 (2): 83- 88. |
GAO L , HAN Y B . Variable-step LMS algorithm based on weighted average gradient[J]. Journal of Jilin Normal University (Natural Science Edition), 2018, 39 (2): 83- 88. | |
61 |
MADER A , PUDER H , SCHMIDT G U . Step-size control for acoustic echo cancellation filter—an overview[J]. Signal Process, 2000, 80 (9): 1697- 1719.
doi: 10.1016/S0165-1684(00)00082-7 |
62 |
SHIN H C , SAYED A H , SONG W J . Variable step-size NLMS and affine projection algorithms[J]. IEEE Signal Processing Letters, 2004, 11 (2): 132- 135.
doi: 10.1109/LSP.2003.821722 |
63 | 李宁. LMS自适应滤波算法的收敛性能研究与应用[D]. 哈尔滨: 哈尔滨工程大学, 2009. |
LI N. Research and application of convergence performance of LMS adaptive filtering algorithm[D]. Harbin: Harbin Engineering University, 2009. | |
64 |
LU Z K , SONG J , HUANG L , et al. Distortionless 1/2 overlap windowing in frequency domain anti-jamming of satellite navigation receivers[J]. Remote Sensing, 2022, 14 (8): 1801.
doi: 10.3390/rs14081801 |
65 |
LU Z K , NIE J W , CHEN F Q , et al. Adaptive time taps of STAP under channel mismatch for GNSS antenna arrays[J]. IEEE Trans.on Instrumentation and Measurement, 2017, 66 (11): 2813- 2824.
doi: 10.1109/TIM.2017.2728420 |
66 | 李安宇. 低复杂度的线性相位FIR多频陷波滤波器的研究与设计[D]. 天津: 天津工业大学, 2019. |
LI A Y. Research and design of low-complexity linear-phase FIR multi-frequency notch filter[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
67 | 李阜东, 石光明, 焦李成. 无乘法的线性相位滤波器组的优化设计[J]. 电波科学学报, 2003, 2, 178- 183. |
LI F D , SHI G M , JIAO L C . Optimal design of linear phase filter bank without multiplication[J]. Chinese Journal of Radio Science, 2003, 2, 178- 183. | |
68 | 黄仰博. 基于FPGA的数字滤波器实现技术研究[D]. 长沙: 国防科学技术大学, 2004. |
HUANG Y B. Research on the realization technology of digital filter based on FPGA[D]. Changsha: National University of Defense Technology, 2004. | |
69 | GU Y T , TANG K , CUI H J . LMS algorithm with gradient descent filter length[J]. IEEE Signal Processing Letters, 2004, 11 (3): 305- 307. |
70 | GONG Y , COWAN C F N . An LMS style variable tap-length algorithm for structure adaptation[J]. IEEE Trans.on Signal Processing, 2005, 53 (7): 2400- 2407. |
71 | ZHANG Y , LI N , CHAMBERS J A , et al. Steady-state performance analysis of a variable tap-length LMS algorithm[J]. IEEE Trans.on Signal Processing, 2008, 56 (2): 839- 845. |
72 | ZHANG Y , CHAMBERS J A . Convex combination of adaptive filters for a variable tap-length LMS algorithm[J]. IEEE Signal Processing Letters, 2006, 13 (10): 628- 631. |
73 | KOZAT S S , ERDOGAN A T , SINGER A C , et al. Steady-state MSE performance analysis of mixture approaches to adaptive filtering[J]. IEEE Trans.on Signal Processing, 2010, 58 (8): 4050- 4063. |
74 | 芮国胜, 苗俊, 张洋, 等. 变宽度凸组合变阶数LMS自适应滤波算法[J]. 系统工程与电子技术, 2012, 34 (3): 451- 456. |
RUI G S , MIAO J , ZHANG Y , et al. Variable-width convex combination variable-order LMS adaptive filtering algorithm[J]. Systems Engineering and Electronics, 2012, 34 (3): 451- 456. | |
75 | WEI Y , YAN Z B . Variable tap-length LMS algorithm with adaptive step size[J]. Circuits, Systems, and Signal Processing, 2017, 36 (7): 2815- 2827. |
76 | AKHTAR M T, AHMED S. A robust normalized variable tap-length normalized fractional LMS algorithm[C]//Proc. of the IEEE 59th International Midwest Symposium on Circuits and Systems, 2016. |
77 | WU H L, WANG Y W, LI Z K, et al. A novel variable tap-length digital self-interference cancellation algorithm for full-duplex system[C]//Proc. of the IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering, 2019: 424-427. |
78 | ALSAID S, ABDEL-RAHEEM E, MAYYAS K. New constant modulus blind equalizer with optimum tap-length for QAM signals[C]//Proc. of the IEEE International Symposium on Signal Processing and Information Technology, 2019. |
79 | HUO S M , NIE J W , TANG X M , et al. Minimum energy block technique against pulsed and narrowband mixed interferers for single antenna GNSS receivers[J]. IEEE Communications Letters, 2015, 19 (11): 1933- 1936. |
80 | LU Z K , CHEN F Q , NIE J W , et al. Impact on antijamming performance of channel mismatch in GNSS antenna arrays receivers[J]. International Journal of Antennas & Propagation, 2016, 2016, 1909708. |
81 | OBRIEN A J , GUPTA I J . Mitigation of adaptive antenna induced bias errors in GNSS receivers[J]. IEEE Trans.on Aerospace & Electronic Systems, 2011, 47 (1): 524- 538. |
82 | SAEED D , ALI J , ALI B , et al. GNSS space-time interference mitigation and attitude determination in the presence of interference signals[J]. Sensors, 2015, 15 (6): 12180- 12204. |
83 | 李双勋, 程翥, 王展, 等. 空时处理信号失真的一种补偿方法[J]. 信号处理, 2008, 24 (2): 223- 226. |
LI S X , CHENG Z , WANG Z , et al. A compensation method for signal distortion in space-time processing[J]. Signal Processing, 2008, 24 (2): 223- 226. | |
84 | 范广腾. 非理想信道下抗干扰接收机高精度测距技术研究[D]. 长沙: 国防科技大学, 2016. |
FAN G T. Research on high precision ranging technology of anti-jamming receiver under non-ideal channel[D]. Changsha: National University of Defense Technology, 2016. | |
85 | MCGRAW G A, MCDOWELL C, YOUNG R S Y, et al. Assessment of GPS anti-jam system pseudorange and carrier phase measurement error effects[C]//Proc. of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2005: 603-607. |
86 | 王峰, 傅有光, 孟兵, 等. 基于傅里叶变换的雷达通道均衡算法性能分析及改进[J]. 电子学报, 2006, 9, 1677- 1680. |
WANG F , FU Y G , MENG B , et al. Performance analysis and improvement of radar channel equalization algorithm based on Fourier transform[J]. Acta Electronica Sinca, 2006, 9, 1677- 1680. | |
87 | 李柏渝. 高性能卫星导航接收机模拟信道关键技术研究[D]. 长沙: 国防科技大学, 2011. |
LI B Y. Research on key technology of high-performance satellite navigation receiver analog channel[D]. Changsha: National University of Defense Technology, 2011. | |
88 | CAO L, AN X P, HONG G, et al. Analysis of measurement biases induced by adaptive antenna arrays for GNSS receivers[C]//Proc. of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2016: 1863-1867. |
89 | FAN G T , TANG X M , NIE J W , et al. A zero bias frequency-domain interference suppressor for GNSS receivers[J]. IEICE Trans.on Communications, 2016, 99 (9): 2081- 2086. |
90 | 范广腾, 倪少杰, 唐小妹, 等. 非理想信道下测量零值无偏干扰抑制滤波器设计[J]. 国防科技大学学报, 2016, 38 (2): 123- 127. |
FAN G T , NI S J , TANG X M , et al. Design of measurement zero-value unbiased interference suppression filter in non-ideal channel[J]. Journal of National University of Defense Technology, 2016, 38 (2): 123- 127. | |
91 | SONG J , LU Z K , XIAO Z B , et al. Optimal order of time-domain adaptive filter for anti-jamming navigation receiver[J]. Remote Sensing, 2022, 14 (1): 48. |
92 | 鲁祖坤, 陈飞强, 孙一凡, 等. 导航信号功率增强对阵列接收机的影响分析[J]. 系统工程与电子技术, 2021, 43 (9): 2581- 2587. |
LU Z K , CHEN F Q , SUN Y F , et al. Analysis of influence of navigation signal power enhancement on array receivers[J]. Systems Engineering and Electronics, 2021, 43 (9): 2581- 2587. |
[1] | 胡彦逢, 曹可劲, 边少锋, 李豹, 叶鑫. 基于时钟频漂检验的卫星导航欺骗识别算法[J]. 系统工程与电子技术, 2015, 37(7): 1629-1632. |
[2] | 王虹, 李兴国, 王剑桥. 基于离散双正交傅里叶变换的FMCW雷达测距方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1372-1376. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||