1 |
RAHIMI R , ABDOLLAHI F , NAQSHI K . Time-varying formation control of a collaborative heterogeneous multi agent system[J]. Robotics and Autonomous Systems, 2014, 62 (12): 1799- 1805.
doi: 10.1016/j.robot.2014.07.005
|
2 |
侯岳奇, 梁晓龙, 张诺, 等. 有向通信拓扑下海上无人集群分布式编队控制[J]. 中国舰船研究, 2021, 16 (6): 1- 9. 1-9, 33
|
|
HOU Y Q , LIANG X L , ZHANG N , et al. Distributed formation control for swarms of unmanned marine vehicle with directed interaction topology[J]. Chinese Journal of Ship Research, 2021, 16 (6): 1- 9. 1-9, 33
|
3 |
LIU Z X , ZHANG Y M , YU X , et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41, 71- 93.
doi: 10.1016/j.arcontrol.2016.04.018
|
4 |
PIGATTO D F , GONÇALVES L , ROBERTO G F , et al. The HAMSTER data communication architecture for unmanned aerial, ground and aquatic systems[J]. Journal of Intelligent & Robotic Systems, 2016, 84 (1): 705- 723.
|
5 |
YOON S , DO H , KIM J . Collaborative mission and route planning of multi-vehicle systems for autonomous search in marine environment[J]. International Journal of Control, Automation and Systems, 2020, 18 (3): 546- 555.
doi: 10.1007/s12555-019-0666-4
|
6 |
张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战[J]. 自动化学报, 2020, 46 (5): 847- 857.
|
|
ZHANG W D , LIU X C , HAN P . Progress and challenges of overwater unmanned systems[J]. Acta Automatica Sinica, 2020, 46 (5): 847- 857.
|
7 |
LIU Z W , HOU H , WANG Y W . Formation-containment control of multiple underactuated surface vessels with sampling communication via hierarchical sliding mode approach[J]. ISA Transactions, 2022, 124, 458- 467.
doi: 10.1016/j.isatra.2019.12.003
|
8 |
ELHAKI O , SHOJAEI K . Robust saturated dynamic surface controller design for underactuated fast surface vessels including actuator dynamics[J]. Ocean Engineering, 2021, 229, 108987.
doi: 10.1016/j.oceaneng.2021.108987
|
9 |
HE S , DONG C , DAI S L . Adaptive neural formation control for underactuated unmanned surface vehicles with collision and connectivity constraints[J]. Ocean Engineering, 2021, 226, 108834.
doi: 10.1016/j.oceaneng.2021.108834
|
10 |
HUANG B , SONG S , ZHU C , et al. Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation[J]. Ocean Engineering, 2021, 233, 109158.
doi: 10.1016/j.oceaneng.2021.109158
|
11 |
HUANG C F , ZHANG X K , ZHANG G Q , et al. Robust practical fixed-time leader-follower formation control for underactuated autonomous surface vessels using event-triggered mechanism[J]. Ocean Engineering, 2021, 233, 109026.
doi: 10.1016/j.oceaneng.2021.109026
|
12 |
WANG B , ASHRAFIUON H , NERSESOV S . Leader-follower formation stabilization and tracking control for heterogeneous planar underactuated vehicle networks[J]. Systems & Control Letters, 2021, 156, 105008.
|
13 |
QIU H X , DUAN H B . Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks[J]. Aerospace Science and Technology, 2017, 70, 471- 486.
doi: 10.1016/j.ast.2017.08.030
|
14 |
HE L L , BAI P , LIANG X L , et al. Feedback formation control of UAV swarm with multiple implicit leaders[J]. Aerospace Science and Technology, 2018, 72, 327- 334.
doi: 10.1016/j.ast.2017.11.020
|
15 |
ZOU Y , ZHOU Z Q , DONG X W , et al. Distributed formation control for multiple vertical takeoff and landing UAVs with switching topologies[J]. IEEE/ASME Trans.on Mechatronics, 2018, 23 (4): 1750- 1761.
doi: 10.1109/TMECH.2018.2844306
|
16 |
LIU H , MA T , LEWIS F L , et al. Robust formation control for multiple quadrotors with nonlinearities and disturbances[J]. IEEE Trans.on Cybernetics, 2018, 50 (4): 1362- 1371.
|
17 |
YANG X K , WANG W , HUANG P . Distributed optimal consensus with obstacle avoidance algorithm of mixed-order UAVs-USVs-UUVs systems[J]. ISA Transactions, 2020, 107, 270- 286.
doi: 10.1016/j.isatra.2020.07.028
|
18 |
LI H Y , LI X . Distributed consensus of heterogeneous linear time-varying systems on UAVs-USVs coordination[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2019, 67 (7): 1264- 1268.
|
19 |
HUANG D P , LI H Y , LI X . Formation of generic UAVs-USVs system under distributed model predictive control scheme[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2020, 67 (12): 3123- 3127.
doi: 10.1109/TCSII.2020.2983096
|
20 |
FU J J , WEN G H , YU W W , et al. Finite-time consensus for second-order multi-agent systems with input saturation[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2017, 65 (11): 1758- 1762.
|
21 |
VAN M , MAVROVOUNIOTIS M , GE S S . An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2018, 49 (7): 1448- 1458.
|
22 |
LIU Y , YANG G H . Fixed-time fault-tolerant consensus control for multi-agent systems with mismatched disturbances[J]. Neurocomputing, 2019, 366, 154- 160.
doi: 10.1016/j.neucom.2019.07.093
|
23 |
POLYAKOV A . Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans.on Automatic Control, 2011, 57 (8): 2106- 2110.
|
24 |
LIU J , ZHANG Y L , SUN C Y , et al. Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control[J]. Information Sciences, 2019, 480, 261- 272.
doi: 10.1016/j.ins.2018.12.037
|
25 |
WANG C Y , WEN G G , PENG Z X , et al. Integral sliding-mode fixed-time consensus tracking for second-order non-linear and time delay multi-agent systems[J]. Journal of the Franklin Institute, 2019, 356 (6): 3692- 3710.
doi: 10.1016/j.jfranklin.2019.01.047
|
26 |
DU H B , WEN G H , WU D , et al. Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems[J]. Automatica, 2020, 113, 108797.
doi: 10.1016/j.automatica.2019.108797
|
27 |
LI G F , WU Y J , LIU X C . Adaptive fixed-time consensus tracking control method for second-order multi-agent systems with disturbances[J]. Journal of the Franklin Institute, 2020, 357 (3): 1516- 1531.
doi: 10.1016/j.jfranklin.2019.10.035
|
28 |
ZHANG B, WANG D L, WANG J C. Formation control for multiple heterogeneous unmanned aerial vehicles and unmanned surface vessels system[C]//Proc. of the Chinese Automation Congress, 2019.
|
29 |
FOSSEN T I . Marine control systems: guidance, navigation, and control of ships, rigs and underwater vehicles[M]. Norway: Marine Cybernetics, 2002.
|
30 |
CHENG W L , ZHANG K , JIANG B , et al. Fixed-time fault-tolerant formation control for heterogeneous multi-agent systems with parameter uncertainties and disturbances[J]. IEEE Trans.on Circuits and Systems I: Regular Papers, 2021, 68 (5): 2121- 2133.
doi: 10.1109/TCSI.2021.3061386
|
31 |
YU X , LI P , ZHANG Y M . The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Trans.on Industrial Electronics, 2017, 65 (5): 4135- 4144.
|
32 |
MA D L , XIA Y Q , SHEN G H , et al. Practical fixed-time disturbance rejection control for quadrotor attitude tracking[J]. IEEE Trans.on Industrial Electronics, 2020, 68 (8): 7274- 7283.
|
33 |
DONG W . Cooperative control of underactuated surface vessels[J]. IET Control Theory & Applications, 2010, 4 (9): 1569- 1580.
|
34 |
WEI X Y , YU W W , WANG H , et al. An observer-based fixed-time consensus control for second-order multi-agent systems with disturbances[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2018, 66 (2): 247- 251.
|
35 |
SONG Y D , HE L , ZHANG D , et al. Neuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solution[J]. IEEE Trans.on Neural Networks and Learning Systems, 2018, 30 (7): 1975- 1983.
|