1 |
郭宝柱. 中国航天系统工程方法与实践[J]. 复杂系统与复杂性科学, 2004, 1 (2): 16- 19.
|
|
GUO B Z . China aerospace systems engineering methods and practices[J]. Complex Systems and Complexity Science, 2004, 1 (2): 16- 19.
|
2 |
NA SA . Expanded guidance for NASA systems engineering: crosscutting topics, special topics, and appendices[M]. Washington D. C.: NASA Headquarters, 2016: 94- 110.
|
3 |
FRIEDENTHAL S , ALAN M , RICK S . A practical guide to SysML: the systems modeling language[M]. Amsterdam: Elsevier, 2015.
|
4 |
MANN C . A practical guide to SysML: the systems modeling language[J]. Kybernetes, 2009, 38 (2): 989- 994.
|
5 |
FORTESCUE P , SWINERD G , STARK J . Spacecraft systems engineering[M]. 4th ed West Sussex: Wiley, 2014: 168- 179.
|
6 |
YILDIRIM U , CAMPEAN F , WILLIAMS H . Function modeling using the system state flow diagram[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2017, 31 (4): 413- 435.
doi: 10.1017/S0890060417000294
|
7 |
李明华. 航天复杂巨系统工程管理体系及实施初探[J]. 工程研究, 2020, 12 (2): 155- 163.
|
|
LI M H . Preliminary exploration of engineering management system of complex giant aerospace system and implementation[J]. Journal of Engineering Studies, 2020, 12 (2): 155- 163.
|
8 |
LEMAZURIER L , CHAPURLAT V , GROSSETETE A . An MBSE approach to pass from requirements to functional architecture[J]. IFAC-Papers on Line, 2017, 50 (1): 7260- 7265.
doi: 10.1016/j.ifacol.2017.08.1376
|
9 |
BERGMAN S, FRENCH M, KUHN F. System architecture studies for the energy optimized aircraft[C]//Proc. of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
|
10 |
范秋岑, 毕文豪, 张安. 民用飞机高度控制系统MBSE建模方法[J]. 系统工程与电子技术, 2022, 44 (1): 164- 171.
|
|
FAN Q C , BI W H , ZHANG A . MBSE modeling method of civil aircraft altitude control system[J]. Systems Engineering and Electronics, 2022, 44 (1): 164- 171.
|
11 |
JIA Z R , LU F X , WANG H Y . Multi-stage attack weapon target allocation method based on defense area analysis[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 539- 550.
doi: 10.23919/JSEE.2020.000033
|
12 |
刘继忠, 裴照宇, 于国斌. 航天工程多态全息模型及应用[J]. 宇航学报, 2019, 40 (5): 535- 542.
|
|
LIU J Z , PEI Z Y , YU G B . Space engineering multi-state holographic model and its applications[J]. Journal of Astronaut, 2019, 40 (5): 535- 542.
|
13 |
XIAO F, CHEN B, LI R, et al. A model-based system engineering approach for aviation system design by applying Sysml modeling[C]//Proc. of the Chinese Control and Decision Conference, 2020.
|
14 |
WANG H L , ZHONG D M , ZHAO T D , et al. Integrating model checking with SysML in complex system safety analysis[J]. IEEE Access, 2019, 7, 16561- 16571.
doi: 10.1109/ACCESS.2019.2892745
|
15 |
焦洪臣, 雷勇, 张宏宇. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43 (9): 2516- 2525.
|
|
JIAO H C , LEI Y , ZHANG H Y . Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (9): 2516- 2525.
|
16 |
HOFFMANN H. SysML-based systems engineering using a model-driven development approach[C]//Proc. of the INCOSE International Symposium, 2006, 16(1): 804-814.
|
17 |
KASLOW D, AYRES B J, CAHILL P T, et al. CubeSat model-based system engineering (MBSE) reference model-development and distribution-interim status[C]//Proc. of the Small Satellite Conference, 2016.
|
18 |
CENCETTI M, PASQUINELLI M, MAGGIORE P. System modeling framework and MDO tool integration: MBSE methodologies applied to design and analysis of space system[C]//Proc. of the AIAA Modeling and Simulation Technologies Conference, 2013.
|
19 |
WANG H Q, ZHANGT J, JIANG B C. An integrated analysis and modeling framework for weapon equipment system evolution[C]//Proc. of the 6th International Symposium on Project Management, 2018.
|
20 |
FRIEDENTHAL S , ALAN M , RICK S . A practical guide to SysML: the systems modeling language[M]. Amsterdam: Elsevier, 2015.
|
21 |
张兵, 沈丹, 张志国. 长征系列运载火箭飞行智能化发展路线研究[J]. 导弹与航天运载技术, 2021, (1): 7- 11.
|
|
ZHANG B , SHEN D , ZHANG Z G . The intelligent flight roadmap of long march launch vehicle[J]. Missiles and Space Vehicles, 2021, (1): 7- 11.
|
22 |
鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术, 2017, 1 (3): 1- 8.
|
|
LU Y . Space launch vehicle's development in china[J]. Astronautical Systems Engineering Technology, 2017, 1 (3): 1- 8.
|
23 |
谭述君, 何骁, 张立勇. 运载火箭推力故障下基于智能决策的在线轨迹重规划方法[J]. 宇航学报, 2021, 42 (10): 1228- 1236.
|
|
TAN S J , HE X , ZHANG L Y . Online trajectory replanning method based on intelligent decision-making for launch vehicles under thrust drop failure[J]. Journal of Astronautics, 2021, 42 (10): 1228- 1236.
|
24 |
张荣升, 吴燕生, 秦旭东. 运载火箭推力下降故障下的在线弹道重构方法[J]. 南京航空航天大学学报, 2021, 53 (S1): 25- 31.
|
|
ZHANG R S , WU Y S , QIN X D . Online trajectory reconstruction of launch vehicle with thrust drop faults[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53 (S1): 25- 31.
|
25 |
李师尧, 常武权, 闫宇申. 运载火箭动力故障下的自主救援轨道规划[J]. 飞行力学, 2021, 39 (2): 83- 89.
|
|
LI S Y , CHANG W Q , YUN Y S . Autonomous rescue orbit strategy for propulsion system failure of launch vehicle[J]. Flight Dynamics, 2021, 39 (2): 83- 89.
|
26 |
张智, 容易, 郑立伟, 等. 运载火箭动力冗余技术[J]. 载人航天, 2013, 19 (6): 15- 19.
|
|
ZHANG Z , RONG Y , ZHENG L W , et al. Redundant propulsion technology for launch vehicle[J]. Manned Spaceflight, 2013, 19 (6): 15- 19.
|
27 |
容易, 郑立伟, 常武权. 不同逃逸模式对运载火箭的影响研究[J]. 载人航天, 2018, 24 (3): 394- 399.
|
|
RONG Y , ZHENG L W , CHANG W Q . Effects of various escape schemes on manned launch vehicles[J]. Manned Spaceflight, 2018, 24 (3): 394- 399.
|
28 |
常武权, 张志国. 运载火箭故障模式及制导自适应技术应用分析[J]. 宇航学报, 2019, 40 (3): 302- 309.
|
|
CHANG W Q , ZHANG Z G . Analysis of fault modes and applications of self-adaptive guidance technology for launch vehicle[J]. Journal of Astronautics, 2019, 40 (3): 302- 309.
|
29 |
WANG X J. Development and prospect of launch vehicle technology for space station[C]//Proc. of the International Symposium on Outlook and Cooporation on Near-Earth Orbit Human Space Flight, 2022.
|