1 |
朱旋, 江泽强, 陈睿. 基于UML的联合作战方案计划可视化视图建模[J]. 指挥与控制学报, 2018, 4 (1): 73- 82.
doi: 10.3969/j.issn.2096-0204.2018.01.0073
|
|
ZHU X , JIANG Z Q , CHEN R . Modeling for joint operation planning visualization views based on UML[J]. Journal of Command and Control, 2018, 4 (1): 73- 82.
doi: 10.3969/j.issn.2096-0204.2018.01.0073
|
2 |
United States Department of Defense. Core plan representation(CPR)[EB/OL]. [2022-01-23]. http://reliant.teknowledge.com/CPR2/.
|
3 |
POLYAK S, TATE A. Planning intiative: Shared planning and activity representation-SPAR version 0.2: request for comments[EB/OL]. [2019-3-23]. http://www.aiai.ed.ac.uk/~arpi/spar/spar-doc02.html.
|
4 |
United States Department of Defense. Joint publication 5-0: joint planning[EB/OL]. [2022-01-23]. http://www.dtic.mil/doctrine/jel/new_pubs/jp5_0.pdf.
|
5 |
毛翔, 杨晓波. 美军联合作战行动筹划及计划制定流程[M]. 北京: 军事科学出版社, 2017.
|
|
MAO X , YANG X B . US joint operations planning and planning process[M]. Beijing: Military Science Press, 2017.
|
6 |
程恺, 陈刚, 尹成祥, 等. 作战行动序列核心本体建模及其推理方法[J]. 系统工程与电子技术, 2018, 40 (4): 805- 814.
|
|
CHENG K , CHEN G , YIN C X , et al. Core ontology modeling and reasoning method for course of action[J]. Systems Engineering and Electronics, 2018, 40 (4): 805- 814.
|
7 |
MUNOZ P , KARKHANIS P . Modeling objects with uncertain behaviors[J]. Journal of Object Technology, 2021, 20 (3): 8.
|
8 |
FU C , LIU J H , WANG S D . Building SysML model graph to support the system model reuse[J]. IEEE Access, 2021, 9, 132374- 132389.
doi: 10.1109/ACCESS.2021.3115165
|
9 |
SISO-STD-007-2008. Standard for military scenario definition language (MSDL)[S]. USA: Simulation Interoperability Standards Organization, 2008.
|
10 |
王锐. 基于网络计划图的联合作战方案建模与分析[D]. 长沙: 国防科技大学, 2018.
|
|
WANG R. Modeling and analysis of joint operations based on network planning diagram[D]. Changsha: National University of Defense Technology, 2018.
|
11 |
GEORGIEVSKI I , AIELLO M . HTN planning: overview, comparison, and beyond[J]. Artificial Intelligence, 2015, 222, 124- 156.
doi: 10.1016/j.artint.2015.02.002
|
12 |
XU X , YANG M , LI G . Adaptive CGF commander behavior modeling through HTN guided monte carlo tree search[J]. Journal of Systems Science and Systems Engineering, 2018, 27 (2): 231- 249.
doi: 10.1007/s11518-018-5366-8
|
13 |
ZHOU J F , RENIERS G . Petri-net based simulation analysis for emergency response to multiple simultaneous large-scale Fires[J]. Journal of Loss Prevention in the Process Industries, 2016, 40, 554- 56.
doi: 10.1016/j.jlp.2016.01.026
|
14 |
JIN X , WU F H . Autonomous intelligent decision-making system for humanoid soccer robots based on timed petri network[J]. Basic & Clinical Pharmacology & Toxicology, 2020, 127 (5): 126- 127.
|
15 |
DAN Y , OUSSAMA K , WANG S G . Computation of minimal siphons in Petri nets using problem partitioning approaches[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (2): 329- 338.
doi: 10.1109/JAS.2021.1004326
|
16 |
MUKHERJEE K , RAY A . State splitting and merging in probabilistic finite state automata for signal representation and analysis[J]. Signal Processing, 2014, 104, 105- 119.
doi: 10.1016/j.sigpro.2014.03.045
|
17 |
FERNANDEZ-ISABL , PEIXOTO P , DIEGO I M , et al. Combining dynamic finite state machines and text-based similarities to represent human behavior[J]. Engineering Applications of Artificial Intelligence, 2019, 85, 504- 516.
doi: 10.1016/j.engappai.2019.07.006
|
18 |
FALZON L . Using Bayesian network analysis to support centre of gravity analysis in military planning[J]. European Journal of Operational Research, 2004, 170 (2): 629- 643.
|
19 |
JING L T , MA J F , XIE J , et al. A conceptual design decision approach by integrating rough Bayesian network and game theory under uncertain behavior selections[J]. Expert Systems With Applications, 2022, 202, 117108.
doi: 10.1016/j.eswa.2022.117108
|
20 |
KIDD M . Applying Bayesian belief networks as a tool for structuring and evaluating the planning of nanval operations[J]. Military Operations Research, 2002, 7 (4): 25- 34.
doi: 10.5711/morj.7.4.25
|
21 |
PUGA G F, GOMEZ-MARTIN M A, DIAZ-AGUDO B, et al. Dynamic expansion of behavior trees[C]//Proc. of the Artificial Intelligence and Interactive Digital Entertainment Conference, 2008: 22-24.
|
22 |
YANNICK F , BOUCHARD B , BOUCHARD K , et al. Modeling, learning, and simulating human activities of daily living with behavior trees[J]. Knowledge and Information Systems, 2020, 62 (10): 3881- 3910.
doi: 10.1007/s10115-020-01476-x
|
23 |
RYAN M , HOWARD J . Behavior trees for modelling artificial intelligence in games: a tutorial[J]. The Computer Games Journal, 2017, 6 (3): 171- 184.
doi: 10.1007/s40869-017-0040-9
|
24 |
WODECKI A. Influence of artificial intelligence on activities and competitiveness of an organization[M]. Artificial Intelligence in Value Creation. Springer, 2019, 10(3): 133-246.
|
25 |
ABIYEV R H , AKKAYA N , AYTAC E , et al. Robot soccer control using behavior trees and fuzzy logic[J]. Procedia Computer Science, 2016, 102 (C): 477- 484.
|
26 |
雷明剑, 于淼, 鲁赢. 作战任务协同过程形式化表达方法[J]. 装备学院学报, 2016, 27 (4): 96- 101.
|
|
LEI M J , YU M , LU Y . Formalization description methods for operational coordination process[J]. Journal of Equipment Academy, 2016, 27 (4): 96- 101.
|
27 |
潘明聪, 贺毅辉, 徐伟, 等. 不确定性作战任务形式化描述方法[J]. 指挥控制与仿真, 2014, 36 (3): 28- 31.
|
|
PAN M C , HE Y H , XU W , et al. Formal description for task allocation under uncertain environment[J]. Command Control and Simulation, 2014, 36 (3): 28- 31.
|
28 |
程恺, 车军辉, 张宏军, 等. 作战任务的形式化描述及其过程表示方法[J]. 指挥控制与仿真, 2012, 34 (1): 15- 19.
|
|
CHENG K , CHE J H , ZHANG H J , et al. Formal description of operational task and its process expression[J]. Command Control and Simulation, 2012, 34 (1): 15- 19.
|
29 |
JIANG H B , LI S , LIN C , et al. Research on distributed target assignment based on dynamic allocation auction algorithm[J]. Journal of Physics: Conference Series, 2019, 1419 (1): 12001- 12011.
doi: 10.1088/1742-6596/1419/1/012001
|
30 |
DUAN X J . A novel hybrid auction algorithm for multi-UAVs dynamic task assignment[J]. IEEE Access, 2020, 8, 86207- 86222.
|