1 |
DAFT R L . Organization theory and design[M]. 12th ed Singapore: Cengage Learning Press, 2016.
|
2 |
WANG X , YAO P Y , ZHANG J Y , et al. Distributed tasks-platforms scheduling method to Holonic-C2 organization[J]. Journal of Systems Engineering and Electronics, 2019, 30 (1): 110- 120.
doi: 10.21629/JSEE.2019.01.11
|
3 |
ALBERTS D S . The agility advantage: a survival guide for complex enterprises and endeavors[M]. Washington DC: Command and Control Research Program Press, 2011.
|
4 |
YU F L , TU F , PATTIPATI K R . Integration of a holonic organizational control architecture and multi-objective evolutionary algorithm for flexible distributed scheduling[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38 (5): 1001- 1017.
doi: 10.1109/TSMCA.2008.923082
|
5 |
JENNY M, DAN M, HARVEY R, et al. Modeling C2 agility to meet the demands of a distributed force[C]//Proc. of the International Command and Control Research and Technology Symposium, 2013.
|
6 |
张维明, 朱承, 黄松平, 等. 指挥与控制原理[M]. 北京: 电子工业出版社, 2021.
|
|
ZHANG W M , ZHU C , HUANG S P , et al. Principles of command and control[M]. Beijing: Electronics Industry Press, 2021.
|
7 |
杨婷婷. 敏捷C2组织测度研究[D]. 长沙: 国防科技大学, 2013.
|
|
YANG T T. Research on the measures of the agile C2 organization[D]. Changsha: National University of Defense Technology, 2013.
|
8 |
XIU B X, LIANG M L, MU L. Robustness analysis of military organization[C]//Proc. of the International Conference on Machine Learning and Cybernetics, 2010: 1971-1975.
|
9 |
YANG Y, XIU B X, YANG T T, et al. The robustness of agile C2 organization[C]//Proc. of the International Conference on Information Science and Electronic Technology, 2015: 24-27.
|
10 |
王勋, 贾方超, 张杰勇, 等. 基于多目标优化的Holonic-C2组织协作式资源动态调度方法[J]. 控制与决策, 2021, 36 (6): 1472- 1481.
doi: 10.13195/j.kzyjc.2019.1032
|
19 |
YANIKOGLU I , GORISSEN B L , HERTOG D D . A survey of adjustable robust optimization[J]. European Journal of Operational Research, 2019, 277 (3): 799- 813.
doi: 10.1016/j.ejor.2018.08.031
|
20 |
BERTSIMAS D , BROWN D B , CARAMANIS C . Theory and applications of robust optimization[J]. Society for Industrial and Applied Mathematics Review, 2011, 53 (3): 464- 501.
|
21 |
WANG X , YAO P Y , ZHANG J Y , et al. Dynamic resource scheduling for C2 organizations based on multi-objective optimization[J]. IEEE Access, 2019, 7, 64614- 64626.
doi: 10.1109/ACCESS.2019.2914951
|
22 |
KATHRIN K , ELISABETH K , ANITA S , et al. A unified approach to uncertain optimization[J]. European Journal of Operational Research, 2017, 260 (2): 403- 420.
doi: 10.1016/j.ejor.2016.12.045
|
23 |
JIANG C , HAN X , LIU G R , et al. A nonlinear interval num ber programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008, 188 (1): 1- 13.
doi: 10.1016/j.ejor.2007.03.031
|
24 |
NATO SAS-085 Research Task Group. Final report on C2 agi-lity[R]. Washington DC: Command and Control Research Program Press, 2014.
|
25 |
钟赟, 万路军, 张杰勇. 区间不确定性下的空中作战行动过程优选方法[J]. 航空学报, 2021, 42 (2): 324282.
|
|
ZHONG Y , WAN L J , ZHANG J Y . Optimized selection method for air combat course of action with interval uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (2): 324282.
|
26 |
WAN L J , ZHONG Y , LI W . COA optimized selection method of aviation swarm based on DINs and DABC[J]. IEEE Access, 2020, 8, 65116- 65126.
doi: 10.1109/ACCESS.2020.2982784
|
27 |
HAIDER S , LEVIS A H . Effective course-of-action determination to achieve desired effects[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2007, 37 (6): 1140- 1150.
doi: 10.1109/TSMCA.2007.904771
|
10 |
WANG X , JIA F C , ZHANG J Y , et al. Holonic-C2 organization collaborative resource dynamic scheduling method based on multi-objective optimization[J]. Control and Decision, 2021, 36 (6): 1472- 1481.
doi: 10.13195/j.kzyjc.2019.1032
|
11 |
SUN Y , YAO P Y , SHUI D D , et al. Uncertain optimal model and solving method to platform scheduling problem in battlefield[J]. Journal of Systems Engineering and Electronics, 2016, 27 (1): 157- 165.
|
12 |
YANG C H , LIU J X , CHEN H H , et al. Adaptive optimization of agile organization of command and control resource[J]. Journal of Systems Engineering and Electronics, 2009, 20 (3): 558- 564.
|
13 |
LEVCHUK G M , LEVCHUK Y N , LUO J , et al. Normative design of organizations, Part I: mission planning[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2002, 32 (3): 346- 359.
doi: 10.1109/TSMCA.2002.802819
|
14 |
LEVCHUK G M , LEVCHUK Y N , LUO J , et al. Normative design of organizations, Part Ⅱ: organizational structure[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2002, 32 (3): 360- 375.
doi: 10.1109/TSMCA.2002.802820
|
15 |
LEVCHUK G M , LEVCHUK Y N , MEIRINA C , et al. Normative design of organizations, Part Ⅲ: modeling congruent, robust, and adaptive organizations[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2004, 34 (3): 337- 350.
doi: 10.1109/TSMCA.2003.822268
|
16 |
LUIGI M , MARTINA G , DIEGO C . Organizational life cycle models: a design perspective[J]. Journal of Organization Design, 2021, 10 (1): 3- 18.
doi: 10.1186/s41469-021-00090-7
|
17 |
ZHOU D , SHENG M , LI B , et al. Distributionally robust planning for data delivery in distributed satellite cluster network[J]. IEEE Trans.on Wireless Communications, 2019, 18 (7): 3642- 3657.
doi: 10.1109/TWC.2019.2916663
|
18 |
BOLD M , GOERIGK M . A compact reformulation of the two-stage robust resource-constrained project scheduling problem[J]. Computers and Operations Research, 2021, 130, 105232.
doi: 10.1016/j.cor.2021.105232
|
28 |
FOX M, GEREVINI A, LONG D, et al. Plan stability: replanning versus plan repair[C]//Proc. of the International Conference on Automated Planning and Scheduling, 2006: 212-221.
|
29 |
SONG B D, KIM J, MORRISON J R. Towards real time scheduling for persistent UAV service: a rolling horizon MILP approach, RHTA and the STAH heuristic[C]//Proc. of the International Conference on Unmanned Aircraft Systems, 2014: 506-515.
|
30 |
YUAN P L , HAN W , SU X C , et al. A dynamic scheduling method for carrier aircraft support operation under uncertain conditions based on rolling horizon strategy[J]. Applied Sciences, 2018, 8 (9): 1546.
doi: 10.3390/app8091546
|
31 |
ZHANG A , TANG Z L , ZHANG C . Man-machine function allocation based on uncertain linguistic multiple attribute decision making[J]. Chinese Journal of Aeronautics, 2011, 24 (6): 816- 822.
doi: 10.1016/S1000-9361(11)60096-4
|
32 |
王勋, 张杰勇, 万路军, 等. Holonic-C2组织决策分配及演化方法[J]. 国防科技大学学报, 2020, 42 (6): 157- 166.
|
|
WANG X , ZHANG J Y , WAN L J , et al. Holonic-C2 organization decision allocation and evolution method[J]. Journal of National University of Defense Technology, 2020, 42 (6): 157- 166.
|