1 |
刘洁瑜, 赵彤, 刘敏. 基于RetinaNet的SAR图像舰船目标检测[J]. 湖南大学学报(自然科学版), 2020, 47 (2): 85- 91.
|
|
LIU J Y , ZHAO T , LIU M . Ship target detection in SAR image based on RetinaNet[J]. Journal of Hunan University (Natural Science Edition), 2020, 47 (2): 85- 91.
|
2 |
韩子硕, 王春平, 付强, 等. 基于超密集特征金字塔网络的SAR图像舰船检测[J]. 系统工程与电子技术, 2020, 42 (10): 2214- 2222.
doi: 10.3969/j.issn.1001-506X.2020.10.09
|
|
HAN Z S , WANG C P , FU Q , et al. Ship detection in SAR images based on super dense feature pyramid networks[J]. Systems Engineering and Electronics, 2020, 42 (10): 2214- 2222.
doi: 10.3969/j.issn.1001-506X.2020.10.09
|
3 |
WANG C L , BI F K , ZHANG W P , et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (4): 529- 533.
doi: 10.1109/LGRS.2017.2654450
|
4 |
ZHAO Z , JI K F , XING X W , et al. Ship surveillance by integration of space-borne SAR and AIS-review of current research[J]. Journal of Navigation, 2014, 67 (1): 177- 189.
doi: 10.1017/S0373463313000659
|
5 |
FINGAS M F , BROWN C E . Review of ship detection from airborne platforms[J]. Canadian Journal of Remote Sensing, 2001, 27 (4): 379- 385.
doi: 10.1080/07038992.2001.10854880
|
6 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Artificial Neural Network, 2017, 60 (6): 84- 90.
|
7 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
8 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
9 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proc. of the 28th International Conference on Neural Information Processing Systems, 2015: 91-99.
|
10 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
12 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017: 318-327.
|
13 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
14 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
|
15 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2021-04-10]. https://arxiv.org/abs/1804.02767.
|
16 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
|
17 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proc. of the 31st AAAI Conference on Artificial Intelligence, 2017: 4278-4284.
|
18 |
LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the SAR in Big Data Era: Models, Methods and Applications, 2017.
|
19 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
20 |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995.
|
21 |
HUANG G, LIU Z, VAN D M L, et al. Densely connected convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
|
22 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
23 |
刘杰平, 温竣文, 梁亚玲. 基于多尺度注意力导向网络的单目图像深度估计[J]. 华南理工大学学报(自然科学版), 2020, 48 (12): 52- 62.
|
|
LIU J P , WEN J W , LIANG Y L . Monocular image depth estimation based on multi-scale attention oriented networl[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48 (12): 52- 62.
|
24 |
刘元宁, 吴迪, 朱晓冬, 等. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51 (3): 1026- 1033.
|
|
LIU Y N , WU D , ZHU X D , et al. User interface components detection algorithm based on improved YOLOv3[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51 (3): 1026- 1033.
|