| 1 | SIKANETA I ,  GIERULL C H ,  CERUTTI-MAORI D .  Optimum signal processing for multichannel SAR: with application to high-resolution wide-swath imaging[J]. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (10): 6095- 6109. doi: 10.1109/TGRS.2013.2294940
 | 
																													
																						| 2 | 邓云凯, 禹卫东, 张衡, 等.  未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9 (1): 1- 33. | 
																													
																						|  | DENG Y K ,  YU W D ,  ZHANG H , et al.  Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9 (1): 1- 33. | 
																													
																						| 3 | KIM J H ,  YOUNIS M ,  PRATS-IRAOLA P , et al.  First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51 (1): 579- 590. doi: 10.1109/TGRS.2012.2201947
 | 
																													
																						| 4 | ZDING Z G ,  XIAO F ,  XIE Y Z , et al.  A modified fixed-point chirp scaling algorithm based on updating phase factors regionally for spaceborne SAR real-time imaging[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (12): 7436- 7451. doi: 10.1109/TGRS.2018.2852062
 | 
																													
																						| 5 | HU C ,  LI Y H ,  DONG X C , et al.  Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation[J]. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (1): 159- 172. doi: 10.1109/TGRS.2016.2602939
 | 
																													
																						| 6 | LI Z F ,  WANG H Y ,  SU T , et al.  Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2 (1): 82- 86. doi: 10.1109/LGRS.2004.840610
 | 
																													
																						| 7 | KRIEGER G ,  GEBERT N ,  MOREIRA A .  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1 (4): 260- 264. doi: 10.1109/LGRS.2004.832700
 | 
																													
																						| 8 | WANG J G ,  WANG Y F ,  ZHANG J M , et al.  Resolution calculation and analysis in bistatic SAR with geostationary illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (1): 194- 198. doi: 10.1109/LGRS.2012.2197850
 | 
																													
																						| 9 | WU J J ,  SUN Z C ,  AN H Y , et al.  Azimuth signal multichannel reconstruction and channel configuration design for geosynchronous spaceborne-airborne bistatic SAR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57 (4): 1861- 1872. doi: 10.1109/TGRS.2018.2869835
 | 
																													
																						| 10 | CUI C, DONG X C, HU C. Performance analysis and configuration design of geosynchronous spaceborne-airborne bistatic moving target indication system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020. | 
																													
																						| 11 | ZHANG Y H, HIMED B. Effects of geometry on clutter cha-racteristics of bistatic radars[C]//Proc. of the IEEE Radar Conference, 2003: 417-424. | 
																													
																						| 12 | HIMED B, MICHELS J H, ZHANG Y H. Bistatic STAP performance analysis in radar applications[C]//Proc. of the IEEE Radar Conference, 2001: 198-203. | 
																													
																						| 13 | LONG Y J ,  ZHAO F J ,  ZHENG M J , et al.  A novel azimuth ambiguity suppression method for spaceborne dual-channel SAR-GMTI[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (1): 87- 91. doi: 10.1109/LGRS.2020.2967176
 | 
																													
																						| 14 | XU H J ,  YANG Z W ,  TIAN M , et al.  An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (2): 715- 729. doi: 10.1109/TGRS.2017.2754098
 | 
																													
																						| 15 | ZHAO Z X ,  CHEN X ,  WANG Y H , et al.  Range-Doppler spectrograms-based graph-relational mapping for clutter rejection in HF passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 21 (22): 26006- 26013. | 
																													
																						| 16 | YAN X Y ,  CHEN J ,  NIES H , et al.  A bistatic analytical approximation model for Doppler rate estimation error from real-time spaceborne SAR onboard orbit determination data[J]. Remote Sensing, 2020, 12 (19): 3156. doi: 10.3390/rs12193156
 | 
																													
																						| 17 | ZHANG Y ,  XIONG W ,  DONG X C , et al.  A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne-airborne bistatic multichannel SAR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (8): 5976- 5991. doi: 10.1109/TGRS.2020.2974531
 | 
																													
																						| 18 | MELVN W L, HIMED B, DAVIS M. Doubly adaptive bistatic clutter filtering[C]//Proc. of the IEEE Radar Conference, 2003: 171-178. | 
																													
																						| 19 | CHIN H, LIM B, ABOUTANIOS E, et al. Modified JDL with Doppler compensation for airborne bistatic radar[C]//Proc. of the IEEE International Radar Conference, 2005: 854-858. | 
																													
																						| 20 | ZHANG S X ,  XING M D ,  ZONG Y L .  A novel weighted Doppler centroid estimation approach based on electromagnetic scattering model for multichannel in azimuth HRWS SAR system[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (9): 5015- 5034. doi: 10.1109/TGRS.2018.2804334
 | 
																													
																						| 21 | VARADARAJAN V ,  KROLIK J L .  Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Trans. on Signal Processing, 2006, 54 (3): 848- 860. doi: 10.1109/TSP.2005.862941
 | 
																													
																						| 22 | 张双喜, 乔宁, 邢孟道, 等.  多普勒频谱模糊情况下的星载方位向多通道高分宽幅SAR-GMTI杂波抑制方法[J]. 雷达学报, 2020, 9 (2): 295- 303. | 
																													
																						|  | ZHANG S X ,  QIAO N ,  XING M D , et al.  A novel clutter suppression approach for the space-borne multiple channel in the azimuth high-resolution and wide-swath SAR-GMTI system with an ambiguous Doppler spectrum[J]. Journal of Radars, 2020, 9 (2): 295- 303. | 
																													
																						| 23 | ZHANG S X ,  XING M D ,  XIA X G , et al.  Robust clutter suppression and moving target imaging approach for multichannel in azimuth high-resolution and wide-swath synthetic aperture radar[J]. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (2): 687- 709. doi: 10.1109/TGRS.2014.2327031
 | 
																													
																						| 24 | 田明明, 廖桂生, 李云鹏, 等.  超高速平台载雷达杂波特性与抑制方法[J]. 系统工程与电技术, 2020, 42 (2): 301- 308. | 
																													
																						|  | TIAN M M ,  LIAO G S ,  LI Y P , et al.  Clutter properties and suppression method of hypersonic platform radar[J]. Systems Engineering and Electronics, 2020, 42 (2): 301- 308. | 
																													
																						| 25 | KLEMM R .  Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (2): 596- 608. doi: 10.1109/7.845248
 | 
																													
																						| 26 | DUAN R ,  WANG X G ,  JIANG C S , et al.  Space-time clutter model for airborne bistatic radar with non-Gaussian statistics[J]. Journal of Systems Engineering and Electronics, 2009, 20 (2): 283- 290. | 
																													
																						| 27 | PILLAI S U ,  HIMED B ,  LI K Y .  Effect of Earth's rotation and range fold over on space-based radar performance[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (3): 917- 932. doi: 10.1109/TAES.2006.248188
 | 
																													
																						| 28 | ZULCH P, DAVIS M, ADZIMA L, et al. The earth rotation effect on a LEO L-band GMTI SBR and mitigation strategies[C]//Proc. of the IEEE Radar Conference, 2004: 27-32. | 
																													
																						| 29 | 刘楠, 张林让, 易予生, 等.  星载双基地雷达空时二维杂波建模和特性分析[J]. 西安电子科技大学学报(自然科学版), 2009, 36 (3): 390- 395. | 
																													
																						|  | LIU N ,  ZHANG L R ,  YI Y S , et al.  Clutter modeling and analysis for spaceborne bistatic radar[J]. Journal of Xidian University (Natural Science), 2009, 36 (3): 390- 395. | 
																													
																						| 30 | 李华, 汤俊, 彭应宁.  星载双基地雷达空时二维杂波建模方法[J]. 电子学报, 2008, 36 (3): 417- 420. | 
																													
																						|  | LI H ,  TANG J ,  PENG Y N .  Modeling of space-time clutter for bistatic space based radar[J]. Acta Electronica Sinica, 2008, 36 (3): 417- 420. |