1 |
SIKKA P , ASATI A R , SHEKHAR C . Power-and area-optimized high-level synthesis implementation of a digital down converter for software-defined radio applications[J]. Circuits, Systems, and Signal Processing, 2021, 40 (6): 2883- 2894.
doi: 10.1007/s00034-020-01601-9
|
2 |
CARDILLO E , CANANZI R , VITA P , et al. Dual-conversion microwave down converter for nanosatellite electronic warfare systems[J]. Applied Sciences, 2022, 12 (3): 1524.
doi: 10.3390/app12031524
|
3 |
NAGESH B K , REDDY V S . Digital down converter for 5G systems[J]. Perspectives in Communication, Embedded-Systems and Signal-Processing-PiCES, 2021, 7- 10.
|
4 |
DATTA D , MITRA P , DUTTA H S . FPGA implementation of high performance digital down converter for software defined radio[J]. Microsystem Technologies, 2022, 28 (2): 533- 542.
doi: 10.1007/s00542-019-04579-w
|
5 |
LI Y , WANG M G , SUN J , et al. Photonic-assisted wideband frequency down-converter with leakage cancellation and image rejection for FMCW radar receiver[J]. IEEE Journal of Quantum Electronics, 2021, 58 (1): 8700107.
|
6 |
CHOI J , NA K I , SHIN Y , et al. Research on broadband signal processing techniques for the small millimeter wave tracking radar[J]. The Journal of the Institute of Internet, Broadcasting and Communication, 2021, 21 (6): 49- 55.
|
7 |
张凯, 陈龙, 秦奋, 等. 高倍抽取率的数字下变频设计[J]. 火控雷达技术, 2019, 48 (4): 33- 37.
|
|
ZHANG K , CHEN L , QIN F , et al. Design of a digital down converter with high decimation rate[J]. Fire Control Radar Technology, 2019, 48 (4): 33- 37.
|
8 |
BOUTROS A , BETZ V . FPGA architecture: principles and progression[J]. IEEE Circuits and Systems Magazine, 2021, 21 (2): 4- 29.
doi: 10.1109/MCAS.2021.3071607
|
9 |
MAZHER I J L , MANIKANDAN T . FPGA-based reconfigurable architectures for DSP computations[M]. Singapore: Springer, Advances in Smart System Technologies, 2021: 587- 594.
|
10 |
TIAN H W , GUO S , ZHAO P , et al. Design and implementation of a real-time multi-beam sonar system based on FPGA and DSP[J]. Sensors, 2021, 21 (4): 1425.
doi: 10.3390/s21041425
|
11 |
KWIATKOWSKI P . Digital-to-time converter for test equipment implemented using FPGA DSP blocks[J]. Measurement, 2021, 177, 109267.
doi: 10.1016/j.measurement.2021.109267
|
12 |
HALABI L M , ALSOFYANI I M , LEE K B . Hardware implementation for hybrid active NPC converters using FPGA-based dual pulse width modulation[J]. Journal of Power Electronics, 2021, 21 (11): 1669- 1679.
doi: 10.1007/s43236-021-00305-w
|
13 |
LIU Y J, WANG J, LIU J. Accelerating the simulation of finite difference time domain (FDTD) with GPU[C]//Proc. of the IEEE International Joint EMC/SI/PI and EMC Europe Symposium, 2021: 707-711.
|
14 |
BERGER M , GIOTAKIS A I , PILLEI M , et al. Agreement between rhinomanometry and computed tomography-based computational fluid dynamics[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16 (4): 629- 638.
doi: 10.1007/s11548-021-02332-1
|
15 |
JEONG W K , FLETCHER P T , TAO R , et al. Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver[J]. IEEE Trans.on Visualization and Computer Graphics, 2007, 13 (6): 1480- 1487.
doi: 10.1109/TVCG.2007.70571
|
16 |
GADEKALLU T R , RAJPUT D S , REDDY M , et al. A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU[J]. Journal of Real-Time Image Processing, 2021, 18 (4): 1383- 1396.
doi: 10.1007/s11554-020-00987-8
|
17 |
ABBASI J S , BASHIR F , QURESHI K N , et al. Deep learning-based feature extraction and optimizing pattern matching for intrusion detection using finite state machine[J]. Computers & Electrical Engineering, 2021, 92, 107094.
|
18 |
JURCZUK K , CZAJKOWSKI M , KRETOWSKI M . Multi-GPU approach to global induction of classification trees for large-scale data mining[J]. Applied Intelligence, 2021, 51 (8): 5683- 5700.
doi: 10.1007/s10489-020-01952-5
|
19 |
KUMAR V , SHARMA D K , MISHRA V K . Mille cheval: a GPU-based in-memory high-performance computing framework for accelerated processing of big-data streams[J]. The Journal of Supercomputing, 2021, 77 (7): 6936- 6960.
doi: 10.1007/s11227-020-03508-3
|
20 |
SHI L . Application of big data language recognition technology and GPU parallel computing in English teaching visualization system[J]. International Journal of Speech Technology, 2022, 25 (3): 667- 677.
doi: 10.1007/s10772-021-09904-1
|
21 |
ALLEN E, CHASE D, LUCHANGCO V, et al. Object-oriented units of measurement[C]//Proc. of the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, 2004: 384-403.
|
22 |
OBERG J . Why the Mars probe went off course[J]. IEEE Spectrum, 1999, 36 (12): 34- 39.
doi: 10.1109/6.809121
|
23 |
KAHAN W. How futile are mindless assessments of roundoff in floating-point computation?[EB/OL]. [2022-02-20]. http://http.cs.berkeley.edu/~kahan/Mindless.pdf.
|
24 |
VON N J , GOLDSTINE H H . Numerical inverting of matrices of high order[J]. Bulletin of the American Mathematical Society, 1947, 53 (11): 1021- 1099.
doi: 10.1090/S0002-9904-1947-08909-6
|
25 |
TURING A M . Rounding-off errors in matrix processes[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1948, 1 (1): 287- 308.
doi: 10.1093/qjmam/1.1.287
|
26 |
WILKINSON J H . Rounding errors in algebraic processes[M]. New York: Dover Publications, 1963.
|
27 |
HIGHAM N J . Accuracy and stability of numerical algorithm[M]. Philadelphia: Science for Industry and Applied Mathematics, 1996.
|
28 |
周毓麟, 袁国兴. 关于科学计算用数字电子计算机字长问题[J]. 计算机工程与科学, 2005, 27 (10): 1- 2.1-2, 16
|
|
ZHOU Y L , YUAN G X . On the word length of digital electronic computers for scientific computations[J]. Computer Engineering & Science, 2005, 27 (10): 1- 2.1-2, 16
|
29 |
MULLER J M , BRISEBARRE N , DEDINECHIN F , et al. Handbook of floating-point arithmetic[M]. Basel, Switzerland: Birkhäuser, 2018.
|
30 |
姜浩. 高精度可靠浮点计算及舍入误差分析研究[D]. 长沙: 国防科学技术大学, 2013.
|
|
JIANG H. Study on reliable computing and rounding[D]. Changsha: National University of Defense Technology, 2013.
|
31 |
杜配冰. 基于多部分浮点数表示格式的高精度算法研究[D]. 长沙: 国防科技大学, 2017.
|
|
DU P B. Research on accurate algorithm based on multiple-component format of floating-point numbers[D]. Changsha: National University of Defense Technology, 2017.
|
32 |
OGITA T , RUMP S M , OISHI S . Accurate sum and dot pro-duct[J]. SIAM Journal on Scientific Computing, 2005, 26 (6): 1955- 1988.
doi: 10.1137/030601818
|
33 |
RUMP S M , OGITA T , OISHI S . Accurate floating-point summation part Ⅰ: faithful rounding[J]. SIAM Journal on Scientific Computing, 2008, 31 (1): 189- 224.
doi: 10.1137/050645671
|
34 |
RUMP S M , OGITA T , OISHI S . Accurate floating-point summation part Ⅱ: sign, K-fold faithful and rounding to nearest[J]. SIAM Journal on Scientific Computing, 2008, 31 (2): 1269- 1302.
|
35 |
KNUTH D . The art of computer programming[M]. 3rd ed MA: Addison Wesley, 1998.
|
36 |
DEKKER T J . A floating-point technique for extending the available precision[J]. Numerische Mathematik, 1971, 18 (3): 224- 242.
doi: 10.1007/BF01397083
|