1 |
HARRY L , TRESS V . Optimum array processing: part Ⅳ of detection, estimation, and modulation theory[M]. New York: Wiley, 2002.
|
2 |
GREENE C R , WOOD R C . Sparse array performance[J]. The Journal of the Acoustical Society of America, 1977, 61 (6): 1866- 1872.
|
3 |
PAL P , VAIDYANATHAN P P . Nested arrays in two dimensions, part Ⅰ: geometrical considerations[J]. IEEE Trans.on Signal Processing, 2012, 60 (9): 4694- 4705.
doi: 10.1109/TSP.2012.2203814
|
4 |
LIN X P , ZHANG X F , ZHOU M J . Nested planar array: configuration design, optimal array and DOA estimation[J]. International Journal of Electronics, 2019, 106 (12): 1885- 1903.
doi: 10.1080/00207217.2019.1625974
|
5 |
QIN S , ZHANG Y M D , AMIN M G . Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Trans.on Signal Processing, 2015, 63 (6): 1377- 1390.
doi: 10.1109/TSP.2015.2393838
|
6 |
LIU C L , VAIDYANATHAN P P . Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling[J]. IEEE Trans.on Signal Processing, 2017, 65 (13): 3369- 3383.
doi: 10.1109/TSP.2017.2690390
|
7 |
REN S W , LI X N , LUO X , et al. Extensions of open box array with reduced mutual coupling[J]. IEEE Sensors Journal, 2018, 18 (13): 5475- 5484.
doi: 10.1109/JSEN.2018.2839200
|
8 |
PAL P , VAIDYANATHAN P P . Nested arrays in two dimensions, part Ⅱ: application in two dimensional array processing[J]. IEEE Trans.on Signal Processing, 2012, 60 (9): 4706- 4718.
doi: 10.1109/TSP.2012.2203815
|
9 |
曹明阳. 基于张量的信号波达方向估计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
CAO M Y. Research on tensor based signal direction-of-arrival estimation methods[D]. Harbin: Harbin Institute of Technology, 2019.
|
10 |
高宇飞. 基于张量分解的参数估计方法及其应用[D]. 成都: 电子科技大学, 2017.
|
|
GAO Y F. Parameter estimation methods and applications based on tensor decomposition[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
|
11 |
COMON P . Tensors a brief introduction[J]. IEEE Signal Processing Magazine, 2014, 31 (3): 44- 53.
doi: 10.1109/MSP.2014.2298533
|
12 |
SIDIROPOULOS N D , LATHAUWER L D , FU X , et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Trans.on Signal Processing, 2017, 65 (13): 3551- 3582.
doi: 10.1109/TSP.2017.2690524
|
13 |
CHEN H Y , AHMAD F , VOROBYOV S , et al. Tensor decompositions in wireless communications and MIMO radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (3): 438- 453.
doi: 10.1109/JSTSP.2021.3061937
|
14 |
THAKRE A , HAARDT M , ROEMER F , et al. Tensor-based spatial smoothing (TB-SS) using multiple snapshots[J]. IEEE Trans.on Signal Processing, 2010, 58 (5): 2715- 2728.
doi: 10.1109/TSP.2010.2043141
|
15 |
NION D , SIDIROPOULOS N D . Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar[J]. IEEE Trans.on Signal Processing, 2010, 58 (11): 5693- 5705.
doi: 10.1109/TSP.2010.2058802
|
16 |
RAO W , LI D , ZHANG J Q . A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom[J]. IEEE Signal Processing Letters, 2018, 25 (2): 234- 238.
|
17 |
SHI J P , WEN F Q , LIU T P . Nested MIMO radar: coarrays, tensor modeling, and angle estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (1): 573- 585.
doi: 10.1109/TAES.2020.3034012
|
18 |
WEN F Q , XIONG X D , SU J , et al. Angle estimation for bistatic MIMO radar in the presence of spatial colored noise[J]. Signal Processing, 2017, 134, 261- 267.
doi: 10.1016/j.sigpro.2016.12.017
|
19 |
SORENSEN M , DE-LATHAUWER L . Multiple invariance ESPRIT for nonuniform linear arrays: a coupled canonical polyadic decomposition approach[J]. IEEE Trans.on Signal Processing, 2016, 64 (14): 3693- 3704.
doi: 10.1109/TSP.2016.2551686
|
20 |
SORENSEN M , DE-LATHAUWER L . Multidimensional harmonic retrieval via coupled canonical polyadic decomposition-part Ⅰ: model and identifiability[J]. IEEE Trans.on Signal Processing, 2017, 65 (2): 517- 527.
doi: 10.1109/TSP.2016.2614796
|
21 |
SORENSEN M , DE-LATHAUWER L . Multidimensional harmonic retrieval via coupled canonical polyadic decomposition-part Ⅱ: algorithm and multirate sampling[J]. IEEE Trans.on Signal Processing, 2017, 65 (2): 528- 539.
doi: 10.1109/TSP.2016.2614797
|
22 |
ZHENG H , SHI Z G , ZHOU C W , et al. Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array[J]. IEEE Signal Processing Letters, 2021, 28, 1545- 1549.
doi: 10.1109/LSP.2021.3099074
|
23 |
TAO J , SIDIROPOULOS N D . Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints[J]. IEEE Trans.on Signal Processing, 2004, 52 (9): 2625- 2636.
doi: 10.1109/TSP.2004.832022
|