1 |
SAIDI L , BENBOUZID M . Prognostics and health management of renewable energy systems: state of the art review, challenges, and trends[J]. Electronics, 2021, 10 (22): 27- 32.
|
2 |
CHENG C , MA G J , ZHANG Y , et al. A deep learning-based remaining useful life prediction approach for bearings[J]. IEEE/ASME Trans.on Mechatronics, 2020, 25 (3): 1243- 1254.
doi: 10.1109/TMECH.2020.2971503
|
3 |
GUO R X , WANG Y , ZHANG H C , et al. Remaining useful life prediction for rolling bearings using EMD-RISI-LSTM[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 3509812.
|
4 |
YU W , KIM I Y , MECHEFSKE C . Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129 (15): 764- 780.
|
5 |
CUBILLO A , VERMEULEN J , RODRIGUEZ D L P M , et al. Physics-based integrated vehicle health management system for predicting the remaining useful life of an aircraft planetary gear transmission[J]. International Journal of Structural Integrity, 2017, 8 (4): 17- 35.
|
6 |
FAN Z L , LIU G B , SI X S , et al. Degradation data-driven approach for remaining useful life estimation[J]. Systems Engineering and Electronics, 2013, 1 (10): 173- 182.
|
7 |
LI Y X , HUANG X Z , DING P F , et al. Wiener-based remaining useful life prediction of rolling bearings using improved Kalman filtering and adaptive modification[J]. Measurement, 2021, 18 (2): 10- 16.
|
8 |
黄亮, 刘君强, 贡英杰. 基于Wiener过程的发动机多阶段剩余寿命预测[J]. 北京航空航天大学学报, 2018, 44 (5): 1081- 1087.
|
|
HUANG L , LIU J Q , GONG Y J . Multi-stage remaining life prediction of engine based on Wiener process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (5): 1081- 1087.
|
9 |
袁庆洋, 叶建华, 李晓钢. BLDC电机温度退化多段Wiener过程建模[J]. 北京航空航天大学学报, 2018, 44 (7): 1514- 1519.
|
|
YUAN Q Y , YE J H , LI X G . Multi-stage Wiener process modeling for temperature degradation of BLDC motors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (7): 1514- 1519.
|
10 |
冯磊, 王宏力, 司小胜, 等. 基于半随机滤波-期望最大化算法的剩余寿命在线预测[J]. 航空学报, 2015, 36 (2): 555- 563.
|
|
FENG L , WANG H L , SI X S , et al. Online prediction of remaining life based on semi-random filtering-expectation-maximization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36 (2): 555- 563.
|
11 |
KUNDU P , DARPE A K , KULKARNI M S . Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing, 2019, 134 (1): 106302.
|
12 |
ZHANG Y B , JIA Y X , FENG T L , et al. Remaining useful life prediction model of planetary carrier in helicopter main gear-box based on Gamma degradation process[J]. Journal of Vibration and Shock, 2012, 31 (14): 47- 51.
|
13 |
王泽洲, 陈云翔, 蔡忠义, 等. 基于比例关系加速退化建模的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2021, 43 (2): 584- 592.
|
|
WANG Z Z , CHEN Y X , CAI Z Y , et al. Equipment remaining useful lifetime online prediction based on accelerated degradation modeling with the proportion relationship[J]. Systems Engineering and Electronics, 2021, 43 (2): 584- 592.
|
14 |
WU M H , WANG X M , LIU X Z . On condition maintenance model for complex electromechanical equipments based on remaining useful life and Wiener process[J]. Journal of Physics Conference Series, 2020, 16 (78): 12- 14.
|
15 |
BABU G S, ZHAO P, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Proc. of the International Conference on Database Systems for Advanced Applications, 2016: 214-228.
|
16 |
HOCHREITER S , SCHMIDHUBER J , et al. Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
|
17 |
ZHENG S A, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]//Proc. of the IEEE International Conference on Prognostics and Health Management, 2017.
|
18 |
王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44 (4): 772- 784.
|
|
WANG X , WU J , LIU C , et al. Fault time series prediction based on LSTM recurrent neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (4): 772- 784.
|
19 |
XIANG S , QIN Y , LUO J , et al. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 216, 107927.
|
20 |
宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25 (7): 1611- 1619.
|
|
SONG Y , XIA T B , ZHENG Y , et al. Prediction of remaining life of turbofan engine based on Autoencoder-BLSTM[J]. Computer Integrated Manufacturing System, 2019, 25 (7): 1611- 1619.
|
21 |
孙世岩, 张钢, 梁伟阁, 等. 基于时间序列数据扩增和BLSTM的滚动轴承剩余寿命预测方法[J]. 系统工程与电子技术, 2022, 44 (3): 1060- 1068.
|
|
SUN S Y , ZHANG G , LIANG W G , et al. Remaining useful life prediction method of rolling bearing based on time series data augmentation and BLSTM[J]. Systems Engineering and Electronics, 2022, 44 (3): 1060- 1068.
|
22 |
CHEN J G , CHEN D J , LIU G P . Using temporal convolution network for remaining useful lifetime prediction[J]. Engineering Reports, 2020, 3 (3): 12305.
|
23 |
KUO P H , HUANG C J . A high precision artificial neural networks model for short-term energy load forecasting[J]. Energies, 2018, 11 (1): 213- 226.
|
24 |
YAO D C , LI B Y , LIU H C , et al. Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit[J]. Measurement, 2021, 175 (4): 10- 16.
|
25 |
李永刚, 王朝晖, 万晓依, 等. 基于深度残差双单向DLSTM的时空一致视频事件识别[J]. 计算机学报, 2018, 41 (12): 2852- 2866.
|
|
LI Y G , WANG C H , WAN X Y , et al. Spatiotemporally consistent video event recognition based on deep residual dual unidirectional DLSTM[J]. Chinese Journal of Computers, 2018, 41 (12): 2852- 2866.
|
26 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer vision, 2016: 770-778.
|
27 |
MA X L , TAO Z M , WANG Y H , et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54, 187- 197.
|
28 |
SAXENA A, KAI G, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the International Conference on Prognostics and Health Management, 2008.
|
29 |
HEIMES F O. Recurrent neural networks for remaining useful life estimation[C]//Proc. of the International Conference on Prognostics and Health Management, 2008.
|
30 |
KONG Z M , CUI Y D , XIA Z , et al. Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[J]. Applied Sciences, 2019, 9 (19): 41- 56.
|