6 |
HE Z , ZHU P F , PARK S H . A robust desirability function method for multi-response surface optimization considering mo-del uncertainty[J]. European Journal of Operational Research, 2012, 221 (1): 241- 247.
doi: 10.1016/j.ejor.2012.03.009
|
7 |
MYERS R H , MONTGOMERY D C , VINING G G , et al. Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36 (1): 53- 77.
doi: 10.1080/00224065.2004.11980252
|
8 |
MYERS R H . Response surface methodology-current status and future directions[J]. Journal of Quality Technology, 1999, 31 (1): 30- 44.
doi: 10.1080/00224065.1999.11979891
|
9 |
KLEIJNEN J P C . Regression and Kriging metamodels with their experimental designs in simulation: a review[J]. European Journal of Operational Research, 2017, 256 (1): 1- 16.
doi: 10.1016/j.ejor.2016.06.041
|
10 |
MYERS R H , MONTGOMERY D C , VINING G G , et al. Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36 (1): 53- 77.
doi: 10.1080/00224065.2004.11980252
|
11 |
MYERS R H , KIM Y , GRIFFITHS K L . Response surface methods and the use of noise variables[J]. Journal of Quality Technology, 1997, 29 (4): 429- 440.
doi: 10.1080/00224065.1997.11979794
|
12 |
汪建均, 马义中. 基于GLM的双响应曲面法及其稳健设计[J]. 系统工程与电子技术, 2012, 34 (11): 2306- 2311.
doi: 10.3969/j.issn.1001-506X.2012.11.20
|
|
WANG J J , MA Y Z . Dual response surface methodology based on generalized linear models and its application on robust design[J]. Systems Engineering and Electronics, 2012, 34 (11): 2306- 2311.
doi: 10.3969/j.issn.1001-506X.2012.11.20
|
13 |
MYERS W R , BRENNEMAN W A , MYERS R H . A dual-response approach to robust parameter design for a generalized linear model[J]. Journal of Quality Technology, 2005, 37 (2): 130- 138.
doi: 10.1080/00224065.2005.11980311
|
14 |
PARK I , GRANDHI R V . A Bayesian statistical method for quantifying model form uncertainty and two model combination methods[J]. Reliability Engineering & System Safety, 2014, 129, 46- 56.
|
15 |
JIANG F , TAN M H Y , TSUI K L . Multiple-target robust design with multiple functional outputs[J]. ⅡSE Transactions, 2021, 53 (9): 1052- 1066.
|
16 |
LI A D , HE Z , ZHANG Y . Robust multi-response optimization considering location effect, dispersion effect, and model uncertainty using hybridization of NSGA-Ⅱ and direct multi-search[J]. Computers & Industrial Engineering, 2022, 169, 108247.
|
17 |
HE Y , HE Z , LEE D H , et al. Robust fuzzy programming method for MRO problems considering location effect, dispersion effect and model uncertainty[J]. Computers & Industrial Engineering, 2017, 105, 76- 83.
|
18 |
WANG J J , MAO T , TU Y L . Simultaneous multi-response optimisation for parameter and tolerance design using Bayesian modelling method[J]. International Journal of Production Research, 2021, 59 (8): 2269- 2293.
doi: 10.1080/00207543.2020.1730011
|
19 |
汪建均, 屠雅楠, 马义中. 结合SUR与因子效应原则的多响应质量设计[J]. 管理科学学报, 2020, 23 (12): 12- 29.
|
|
WANG J J , TU Y N , MA Y Z . Multi-response quality design integrating SUR models with factorial effect principles[J]. Journal of Management Sciences in China, 2020, 23 (12): 12- 29.
|
20 |
WANG J J , MA Y Z , OUYANG L H , et al. Bayesian modeling and optimization for multi-response surfaces[J]. Computers & Industrial Engineering, 2020, 142, 106357.
|
21 |
HASSANI H , KHODAYGAN S , GHADERI A . Bayesian reliabi-lity-based robust design optimization of mechanical systems under both aleatory and epistemic uncertainties[J]. Engineering Optimization, 2022,
doi: 10.1080/0305215X.2021.2014826
|
22 |
WAN L Q , OUYANG L H , ZHOU T Y , et al. An improved reliability-based robust design optimization method using Bayesian seemingly unrelated regression and multivariate loss function[J]. Structural and Multidisciplinary Optimization, 2022, 65 (2)
doi: 10.1007/s00158-022-03172-6
|
23 |
FENG Z B , WANG J J , MA Y Z , et al. Robust parameter design based on Gaussian process with model uncertainty[J]. International Journal of Production Research, 2021, 59 (9): 2772- 2788.
doi: 10.1080/00207543.2020.1740344
|
24 |
ZHOU X J , MA Y Z , TU Y L , et al. Ensemble of surrogates for dual response surface modeling in robust parameter design[J]. Quality and Reliability Engineering International, 2013, 29 (2): 173- 197.
doi: 10.1002/qre.1298
|
25 |
PETERSON J J . A posterior predictive approach to multiple response surface optimization[J]. Journal of Quality Technology, 2004, 36 (2): 139- 153.
doi: 10.1080/00224065.2004.11980261
|
1 |
汪建均. 基于广义线性模型的变量选择与稳健参数设计[D]. 南京: 南京理工大学, 2012.
|
|
WANG J J. Variable selection and robust parameter design based on generalized linear models[D]. Nanjing: Nanjing University of Science and Technology, 2012.
|
2 |
VANLI O A , ZHANG C , WANG B . An adaptive Bayesian app-roach for robust parameter design with observable time series noise factors[J]. ⅡE Transactions, 2013, 45 (4): 374- 390.
|
3 |
TAN M H Y , NG S H . Estimation of the mean and variance response surfaces when the means and variances of the noise variables are unknown[J]. ⅡE Transactions, 2009, 41 (11): 942- 956.
|
4 |
MYERS R H , KHURI A I , VINING G . Response surface alternatives to the Taguchi robust parameter design approach[J]. The American Statistician, 1992, 46 (2): 131- 139.
|
5 |
NAIR V N , ABRAHAM B , MACKAY J , et al. Taguchi's parameter design: a panel discussion[J]. Technometrics, 1992, 34 (2): 127- 161.
doi: 10.1080/00401706.1992.10484904
|
26 |
MIRO-QUESADA G , DEL CASTILLO E , PETERSON J J . A Bayesian approach for multiple response surface optimization in the presence of noise variables[J]. Journal of Applied Statistics, 2004, 31 (3): 251- 270.
doi: 10.1080/0266476042000184019
|
27 |
汪建均, 马义中, 欧阳林寒, 等. 多响应稳健参数设计的贝叶斯建模与优化[J]. 管理科学学报, 2016, 19 (2): 85- 94.
doi: 10.3969/j.issn.1007-9807.2016.02.008
|
|
WANG J J , MA Y Z , OUYANG L H , et al. Bayesian modeling and optimization of multi-response robust parameter design[J]. Journal of Management Sciences in China, 2016, 19 (2): 85- 94.
doi: 10.3969/j.issn.1007-9807.2016.02.008
|
28 |
OUYANG L H , PARK C , MA Y Z , et al. Bayesian hierarchical modelling for process optimisation[J]. International Journal of Production Research, 2021, 59 (15): 4649- 4669.
doi: 10.1080/00207543.2020.1769873
|
29 |
OUYANG L H , ZHU S C , YE K Y , et al. Robust Bayesian hie-rarchical modeling and inference using scale mixtures of normal distributions[J]. ⅡSE Transactions, 2022, 54 (7): 659- 671.
|
30 |
YANIKOGLUI , DEN HERTO D , KLEIJNEN J P C . Robust dual-response optimization[J]. ⅡE Transactions, 2015, 48 (3): 298- 312.
|
31 |
ZHOU X J , JIANG T , ZHOU Z H , et al. Sequential ∈-support vector regression based online robust parameter design[J]. Computers & Industrial Engineering, 2021, 158, 107391.
|
32 |
JIANG F , TAN M H Y . Shifted log loss Gaussian process model for expected quality loss prediction in robust parameter design[J]. Quality Technology & Quantitative Management, 2021, 18 (5): 527- 551.
|
33 |
YANG S J , WANG J J , MA Y . Online robust parameter design considering observable noise factors[J]. Engineering Optimization, 2021, 53 (6): 1024- 1043.
doi: 10.1080/0305215X.2020.1770744
|
34 |
NELDER J A , WEDDERBURN R W M . Generalized linear models[J]. Journal of the Royal Statistical Society: Series A, 1972, 135 (3): 370- 384.
doi: 10.2307/2344614
|
35 |
DEY D K , GHOSH S K , MALLICK B K . Generalized linear mo-dels: a Bayesian perspective[M]. New York: CRC Press, 2000.
|
36 |
GILKS W R , WILD P . Adaptive rejection sampling for Gibbs sampling[J]. Journal of the Royal Statistical Society: Series C, 1992, 41 (2): 337- 348.
|
37 |
IBRAHIM J G , LAUD P W . On Bayesian analysis of generali-zed linear models using Jeffreys's prior[J]. Journal of The American Statistical Association, 1991, 86 (416): 981- 986.
doi: 10.1080/01621459.1991.10475141
|
38 |
BERGQUIST B , VANHATALO E , NORDENVAAD M L . A Bayesian analysis of unreplicated two-level factorials using effects sparsity, hierarchy, and heredity[J]. Quality Engineering, 2011, 23 (2): 152- 166.
doi: 10.1080/08982112.2011.553760
|
39 |
NTZOUFRAS I. Bayesian modeling using WinBUGS[M]. New Jersey: John Wiley & Sons, 2009.
|
40 |
DELLAPORTAS P , FORSTER J J , NTZOUFRAS I . On Bayesian model and variable selection using MCMC[J]. Statistics and Computing, 2002, 12 (1): 27- 36.
doi: 10.1023/A:1013164120801
|
41 |
MYERS R H , MONTGOMERY D C . A tutorial on generalized linear models[J]. Journal of Quality Technology, 1997, 29 (3): 274- 291.
doi: 10.1080/00224065.1997.11979769
|