| 6 | HE Z ,  ZHU P F ,  PARK S H .  A robust desirability function method for multi-response surface optimization considering mo-del uncertainty[J]. European Journal of Operational Research, 2012, 221 (1): 241- 247. doi: 10.1016/j.ejor.2012.03.009
 | 
																													
																						| 7 | MYERS R H ,  MONTGOMERY D C ,  VINING G G , et al.  Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36 (1): 53- 77. doi: 10.1080/00224065.2004.11980252
 | 
																													
																						| 8 | MYERS R H .  Response surface methodology-current status and future directions[J]. Journal of Quality Technology, 1999, 31 (1): 30- 44. doi: 10.1080/00224065.1999.11979891
 | 
																													
																						| 9 | KLEIJNEN J P C .  Regression and Kriging metamodels with their experimental designs in simulation: a review[J]. European Journal of Operational Research, 2017, 256 (1): 1- 16. doi: 10.1016/j.ejor.2016.06.041
 | 
																													
																						| 10 | MYERS R H ,  MONTGOMERY D C ,  VINING G G , et al.  Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36 (1): 53- 77. doi: 10.1080/00224065.2004.11980252
 | 
																													
																						| 11 | MYERS R H ,  KIM Y ,  GRIFFITHS K L .  Response surface methods and the use of noise variables[J]. Journal of Quality Technology, 1997, 29 (4): 429- 440. doi: 10.1080/00224065.1997.11979794
 | 
																													
																						| 12 | 汪建均, 马义中.  基于GLM的双响应曲面法及其稳健设计[J]. 系统工程与电子技术, 2012, 34 (11): 2306- 2311. doi: 10.3969/j.issn.1001-506X.2012.11.20
 | 
																													
																						|  | WANG J J ,  MA Y Z .  Dual response surface methodology based on generalized linear models and its application on robust design[J]. Systems Engineering and Electronics, 2012, 34 (11): 2306- 2311. doi: 10.3969/j.issn.1001-506X.2012.11.20
 | 
																													
																						| 13 | MYERS W R ,  BRENNEMAN W A ,  MYERS R H .  A dual-response approach to robust parameter design for a generalized linear model[J]. Journal of Quality Technology, 2005, 37 (2): 130- 138. doi: 10.1080/00224065.2005.11980311
 | 
																													
																						| 14 | PARK I ,  GRANDHI R V .  A Bayesian statistical method for quantifying model form uncertainty and two model combination methods[J]. Reliability Engineering & System Safety, 2014, 129, 46- 56. | 
																													
																						| 15 | JIANG F ,  TAN M H Y ,  TSUI K L .  Multiple-target robust design with multiple functional outputs[J]. ⅡSE Transactions, 2021, 53 (9): 1052- 1066. | 
																													
																						| 16 | LI A D ,  HE Z ,  ZHANG Y .  Robust multi-response optimization considering location effect, dispersion effect, and model uncertainty using hybridization of NSGA-Ⅱ and direct multi-search[J]. Computers & Industrial Engineering, 2022, 169, 108247. | 
																													
																						| 17 | HE Y ,  HE Z ,  LEE D H , et al.  Robust fuzzy programming method for MRO problems considering location effect, dispersion effect and model uncertainty[J]. Computers & Industrial Engineering, 2017, 105, 76- 83. | 
																													
																						| 18 | WANG J J ,  MAO T ,  TU Y L .  Simultaneous multi-response optimisation for parameter and tolerance design using Bayesian modelling method[J]. International Journal of Production Research, 2021, 59 (8): 2269- 2293. doi: 10.1080/00207543.2020.1730011
 | 
																													
																						| 19 | 汪建均, 屠雅楠, 马义中.  结合SUR与因子效应原则的多响应质量设计[J]. 管理科学学报, 2020, 23 (12): 12- 29. | 
																													
																						|  | WANG J J ,  TU Y N ,  MA Y Z .  Multi-response quality design integrating SUR models with factorial effect principles[J]. Journal of Management Sciences in China, 2020, 23 (12): 12- 29. | 
																													
																						| 20 | WANG J J ,  MA Y Z ,  OUYANG L H , et al.  Bayesian modeling and optimization for multi-response surfaces[J]. Computers & Industrial Engineering, 2020, 142, 106357. | 
																													
																						| 21 | HASSANI H ,  KHODAYGAN S ,  GHADERI A .  Bayesian reliabi-lity-based robust design optimization of mechanical systems under both aleatory and epistemic uncertainties[J]. Engineering Optimization, 2022, doi: 10.1080/0305215X.2021.2014826
 | 
																													
																						| 22 | WAN L Q ,  OUYANG L H ,  ZHOU T Y , et al.  An improved reliability-based robust design optimization method using Bayesian seemingly unrelated regression and multivariate loss function[J]. Structural and Multidisciplinary Optimization, 2022, 65 (2) doi: 10.1007/s00158-022-03172-6
 | 
																													
																						| 23 | FENG Z B ,  WANG J J ,  MA Y Z , et al.  Robust parameter design based on Gaussian process with model uncertainty[J]. International Journal of Production Research, 2021, 59 (9): 2772- 2788. doi: 10.1080/00207543.2020.1740344
 | 
																													
																						| 24 | ZHOU X J ,  MA Y Z ,  TU Y L , et al.  Ensemble of surrogates for dual response surface modeling in robust parameter design[J]. Quality and Reliability Engineering International, 2013, 29 (2): 173- 197. doi: 10.1002/qre.1298
 | 
																													
																						| 25 | PETERSON J J .  A posterior predictive approach to multiple response surface optimization[J]. Journal of Quality Technology, 2004, 36 (2): 139- 153. doi: 10.1080/00224065.2004.11980261
 | 
																													
																						| 1 | 汪建均. 基于广义线性模型的变量选择与稳健参数设计[D]. 南京: 南京理工大学, 2012. | 
																													
																						|  | WANG J J. Variable selection and robust parameter design based on generalized linear models[D]. Nanjing: Nanjing University of Science and Technology, 2012. | 
																													
																						| 2 | VANLI O A ,  ZHANG C ,  WANG B .  An adaptive Bayesian app-roach for robust parameter design with observable time series noise factors[J]. ⅡE Transactions, 2013, 45 (4): 374- 390. | 
																													
																						| 3 | TAN M H Y ,  NG S H .  Estimation of the mean and variance response surfaces when the means and variances of the noise variables are unknown[J]. ⅡE Transactions, 2009, 41 (11): 942- 956. | 
																													
																						| 4 | MYERS R H ,  KHURI A I ,  VINING G .  Response surface alternatives to the Taguchi robust parameter design approach[J]. The American Statistician, 1992, 46 (2): 131- 139. | 
																													
																						| 5 | NAIR V N ,  ABRAHAM B ,  MACKAY J , et al.  Taguchi's parameter design: a panel discussion[J]. Technometrics, 1992, 34 (2): 127- 161. doi: 10.1080/00401706.1992.10484904
 | 
																													
																						| 26 | MIRO-QUESADA G ,  DEL CASTILLO E ,  PETERSON J J .  A Bayesian approach for multiple response surface optimization in the presence of noise variables[J]. Journal of Applied Statistics, 2004, 31 (3): 251- 270. doi: 10.1080/0266476042000184019
 | 
																													
																						| 27 | 汪建均, 马义中, 欧阳林寒, 等.  多响应稳健参数设计的贝叶斯建模与优化[J]. 管理科学学报, 2016, 19 (2): 85- 94. doi: 10.3969/j.issn.1007-9807.2016.02.008
 | 
																													
																						|  | WANG J J ,  MA Y Z ,  OUYANG L H , et al.  Bayesian modeling and optimization of multi-response robust parameter design[J]. Journal of Management Sciences in China, 2016, 19 (2): 85- 94. doi: 10.3969/j.issn.1007-9807.2016.02.008
 | 
																													
																						| 28 | OUYANG L H ,  PARK C ,  MA Y Z , et al.  Bayesian hierarchical modelling for process optimisation[J]. International Journal of Production Research, 2021, 59 (15): 4649- 4669. doi: 10.1080/00207543.2020.1769873
 | 
																													
																						| 29 | OUYANG L H ,  ZHU S C ,  YE K Y , et al.  Robust Bayesian hie-rarchical modeling and inference using scale mixtures of normal distributions[J]. ⅡSE Transactions, 2022, 54 (7): 659- 671. | 
																													
																						| 30 | YANIKOGLUI ,  DEN HERTO D ,  KLEIJNEN J P C .  Robust dual-response optimization[J]. ⅡE Transactions, 2015, 48 (3): 298- 312. | 
																													
																						| 31 | ZHOU X J ,  JIANG T ,  ZHOU Z H , et al.  Sequential ∈-support vector regression based online robust parameter design[J]. Computers & Industrial Engineering, 2021, 158, 107391. | 
																													
																						| 32 | JIANG F ,  TAN M H Y .  Shifted log loss Gaussian process model for expected quality loss prediction in robust parameter design[J]. Quality Technology & Quantitative Management, 2021, 18 (5): 527- 551. | 
																													
																						| 33 | YANG S J ,  WANG J J ,  MA Y .  Online robust parameter design considering observable noise factors[J]. Engineering Optimization, 2021, 53 (6): 1024- 1043. doi: 10.1080/0305215X.2020.1770744
 | 
																													
																						| 34 | NELDER J A ,  WEDDERBURN R W M .  Generalized linear models[J]. Journal of the Royal Statistical Society: Series A, 1972, 135 (3): 370- 384. doi: 10.2307/2344614
 | 
																													
																						| 35 | DEY D K ,  GHOSH S K ,  MALLICK B K .  Generalized linear mo-dels: a Bayesian perspective[M]. New York: CRC Press, 2000. | 
																													
																						| 36 | GILKS W R ,  WILD P .  Adaptive rejection sampling for Gibbs sampling[J]. Journal of the Royal Statistical Society: Series C, 1992, 41 (2): 337- 348. | 
																													
																						| 37 | IBRAHIM J G ,  LAUD P W .  On Bayesian analysis of generali-zed linear models using Jeffreys's prior[J]. Journal of The American Statistical Association, 1991, 86 (416): 981- 986. doi: 10.1080/01621459.1991.10475141
 | 
																													
																						| 38 | BERGQUIST B ,  VANHATALO E ,  NORDENVAAD M L .  A Bayesian analysis of unreplicated two-level factorials using effects sparsity, hierarchy, and heredity[J]. Quality Engineering, 2011, 23 (2): 152- 166. doi: 10.1080/08982112.2011.553760
 | 
																													
																						| 39 | NTZOUFRAS I. Bayesian modeling using WinBUGS[M]. New Jersey: John Wiley & Sons, 2009. | 
																													
																						| 40 | DELLAPORTAS P ,  FORSTER J J ,  NTZOUFRAS I .  On Bayesian model and variable selection using MCMC[J]. Statistics and Computing, 2002, 12 (1): 27- 36. doi: 10.1023/A:1013164120801
 | 
																													
																						| 41 | MYERS R H ,  MONTGOMERY D C .  A tutorial on generalized linear models[J]. Journal of Quality Technology, 1997, 29 (3): 274- 291. doi: 10.1080/00224065.1997.11979769
 |