1 |
LANEMAN J N , WORNELL G W . Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[J]. IEEE Trans. on Information Theory, 2003, 49 (10): 2415- 2425.
doi: 10.1109/TIT.2003.817829
|
2 |
CHOWDHURY S, BENSLIMANE A. A Markov model app-roach for managing switched antenna diversity[C]//Proc. of the IEEE Global Communications Conference, 2019.
|
3 |
ALAMOUTI S M . A simple transmit diversity technique for wireless communications[J]. IEEE Journal on Select Areas in Communications, 1998, 16 (8): 1451- 1458.
doi: 10.1109/49.730453
|
4 |
TAROKH V , JAFARKHANI H , CALDERBANK A R . Space-time block codes from orthogonal designs[J]. IEEE Trans. on Information Theory, 1999, 45 (5): 1456- 1467.
doi: 10.1109/18.771146
|
5 |
HEATH R W , LOVE D J . Multimode antenna selection for spatial multiplexing systems with linear receivers[J]. IEEE Trans. on Signal Processing, 2005, 53 (8): 3042- 3056.
doi: 10.1109/TSP.2005.851109
|
6 |
ZHENG L Z , TSE D . Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels[J]. IEEE Trans. on Information Theory, 2003, 49 (5): 1073- 1096.
doi: 10.1109/TIT.2003.810646
|
7 |
ALTHUNIBAT S , MESLEH R . Enhancing spatial modulation system performance through signal space diversity[J]. IEEE Communications Letters, 2018, 22 (99): 1136- 1139.
|
8 |
LIU C , XIA X G , LI Y , et al. Omnidirectional quasi-orthogonal space-time block coded massive MIMO systems[J]. IEEE Communications Letters, 2019, 23 (9): 1621- 1625.
doi: 10.1109/LCOMM.2019.2923220
|
9 |
LANEMAN J N , TSE D , WORNELL G W . Cooperative diversity in wireless networks: efficient protocols and outage beha-vior[J]. IEEE Trans. on Information Theory, 2004, 50 (12): 3062- 3080.
doi: 10.1109/TIT.2004.838089
|
10 |
PARVARESH F , SOLTANIZADEH H . Diversity-multi-plexing trade-off of half-duplex single relay networks[J]. IEEE Trans. on Information Theory, 2017, 63 (3): 1703- 1720.
doi: 10.1109/TIT.2017.2654241
|
11 |
ZHANG Z , LV T J , SU X . Combining cooperative diversity and multiuser diversity: a fair scheduling scheme for multi-source multi-relay networks[J]. IEEE Communications Le-tters, 2011, 15 (12): 1353- 1355.
doi: 10.1109/LCOMM.2011.102611.111715
|
12 |
FENG Y Q, FANG X J, LI C F, et al. Frequency-domain dual component computation diversity design for air-ground inte-grated mobile communication[C]//Proc. of the IEEE International Conference on Space-Air-Ground Computing, 2020: 38-42.
|
13 |
FENG Y Q , SHA X J , LI Y , et al. Time-domain dual component computation diversity based on generalized hybrid carrier[J]. China Communications, 2021, 18 (10): 149- 158.
|
14 |
WANG Z D, MEI L, WANG X L, et al. WFRFT precoding for generalized frequency division multiplexing[C]//Proc. of the IEEE Wireless Communications & Networking Confe-rence, 2016.
|
15 |
MEI L , ZHANG Q Y , SHA X J , et al. WFRFT precoding for narrowband interference suppression in DFT-based block transmission systems[J]. IEEE Communications Letters, 2013, 17 (10): 1916- 1919.
doi: 10.1109/LCOMM.2013.090213.131126
|
16 |
MEI L , SHA X J , ZHANG N T . The approach to carrier scheme convergence based on 4-weighted fractional Fourier transform[J]. IEEE Communications Letters, 2010, 14 (6): 503- 505.
doi: 10.1109/LCOMM.2010.06.092413
|
17 |
SHIH C C . Fractionalization of Fourier transform[J]. Optics Communications, 1995, 118 (5-6): 495- 498.
doi: 10.1016/0030-4018(95)00268-D
|
18 |
MEI L , SHA X J , RAN Q W . Research on the application of 4-weighted fractional Fourier transform in communication system[J]. Science China Information Sciences, 2010, 53 (6): 1251- 1260.
doi: 10.1007/s11432-010-0073-1
|
19 |
MEI L, SHA X J, ZHANG Q Y, et al. The concepts of hyb-rid-carrier scheme communication system[C]//Proc. of the 6th IEEE International Conference on Communications Network, 2011: 26-33.
|
20 |
WANG K , SHA X J , MEI L . On interference suppression in doubly-dispersive channels with hybrid single-multi carrier modulation and an MMSE iterative equalizer[J]. IEEE Wireless Communications Letters, 2012, 1 (5): 504- 507.
doi: 10.1109/WCL.2012.071612.120359
|
21 |
SHUANG Y, HAO D, WU K Q, et al. Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doub-ly selective fading channels[C]//Proc. of the IEEE 6th International Conference on Intelligent Control & Information Processing, 2015: 6-10.
|
22 |
HUI Y T , LI B B , ZHAO T . 4-weighted fractional Fourier transform over doubly selective channels and optimal order selecting algorithm[J]. Electronics Letters, 2015, 51 (2): 177- 179.
doi: 10.1049/el.2014.2268
|
23 |
WANG Z D , MEI L , WANG X L , et al. On the performance of hybrid carrier system based on WFRFT with power allocation[J]. IEEE Access, 2018, 6, 29231- 29240.
doi: 10.1109/ACCESS.2018.2840969
|
24 |
WANG Z D. Application and performance research of carrier schemefusion mechanism based on WFRFT[D]. Harbin: Harbin Institute of Technology, 2019: 21-25.
|
25 |
PAN N, MEI L, WANG L N, et al. Adaptive technologies of hybrid carrier based on WFRFT facing coverage and spectral efficiency balance[C]//Proc. of the International Conference on Artificial Intelligence for Communications and Networks, 2020: 177- 196.
|
26 |
LIANG Y, XIANG X, WANGR, et al. A WFRFT-TDCS combinatory design to guarantee communication security[C]//Proc. of the IEEE International Conference on Consumer Electronics and Computer Engineering, 2021: 755-761.
|
27 |
MA C , SHA X J , MEI L . Hybrid carrier order selection scheme based on minimum mean square error equalization[J]. IEEE Communications Letters, 2017, 21 (12): 2598- 2601.
doi: 10.1109/LCOMM.2017.2748941
|
28 |
MA C. Design and performance analysis of time-frequency sy-nergistic extended hybrid carrier signals[D]. Harbin: Harbin Institute of Technology, 2019: 104-106.
|
29 |
TSE D , VISWANATH P . Fundamentals of wireless communication[M]. Cambridge: Cambridge University Press, 2005: 78- 80.
|
30 |
LIU X Q. Key technologies of cyclic prefix free OFDM wireless transmission[D]. Harbin: Harbin Institute of Technology, 2017: 60-61.
|