系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (3): 839-847.doi: 10.12305/j.issn.1001-506X.2023.03.26
王世哲1, 李宗吉1, 王平波2,*, 孙玉臣1,3
收稿日期:
2021-12-20
出版日期:
2023-02-25
发布日期:
2023-03-09
通讯作者:
王平波
作者简介:
王世哲(1997—), 男, 硕士研究生, 主要研究方向为水声定位技术Shizhe WANG1, Zongji LI1, Pingbo WANG2,*, Yuchen SUN1,3
Received:
2021-12-20
Online:
2023-02-25
Published:
2023-03-09
Contact:
Pingbo WANG
摘要:
海上弹着点位置测量是海上靶场舰炮武器精度试验中非常关键的一步, 对加强靶场建设、提高部队战斗力具有重要意义。采用被动声探测技术, 在单三元阵定位基础上进行布阵方式的改进, 提出了一种基于双十字阵的海上弹着点定位方法, 推导阐述了定位原理, 重点对三元阵定位与双十字阵定位做出了详细的误差分析与仿真。最终得出, 在假设的理想算例情况下, 基于双十字阵的弹着点定位方法的定位误差降低为单三元阵定位的4.66‰, 更好地满足了海上弹着点定位需求, 具有一定的应用价值与发展前景。
中图分类号:
王世哲, 李宗吉, 王平波, 孙玉臣. 基于双十字阵的海上弹着点定位误差分析[J]. 系统工程与电子技术, 2023, 45(3): 839-847.
Shizhe WANG, Zongji LI, Pingbo WANG, Yuchen SUN. Location error analysis of impact point at sea based on dual cross-array[J]. Systems Engineering and Electronics, 2023, 45(3): 839-847.
1 |
LIU Z Y , CHEN W Y . Research and analysis on firing accuracy of naval gun[J]. Journal of Physics: Conference Series, 2021, 1948 (1): 012081.
doi: 10.1088/1742-6596/1948/1/012081 |
2 | CHEN W Y, LIU G Q, CHEN H D, et al. Research on effectiveness evaluation method of the integrated naval gun and laser weapon system[C]//Proc. of the IEEE International Conference of Intelligent Robotic and Control Engineering, 2018: 51-55. |
3 | LIU G Q, CHEN W Y, CHENG H, et al. Study on a fire distribution model of integrated naval gun and laser weapon system[C]//Proc. of the Chinese Control and Decision Conference, 2018: 2959- 2965. |
4 |
SUN X W , TIAN F , LIANG D Q , et al. Conceptual model of information naval gun weapon system using weapon system engineering method[J]. Advanced Materials Research, 2014, 981, 754- 757.
doi: 10.4028/www.scientific.net/AMR.981.754 |
5 |
DI F A , SAVIO G , STELLINI E , et al. Influence of ceramic firing on marginal gap accuracy and metal-ceramic bond strength of 3D-printed Co-Cr frameworks[J]. The Journal of Prosthetic Dentistry, 2020, 124 (1): 75- 80.
doi: 10.1016/j.prosdent.2019.08.001 |
6 |
YU Y , HAO Y Q , WANG Q Y . Model-based optimized phase-deviation deep brain stimulation for Parkinson's disease[J]. Neural Networks, 2020, 122, 308- 319.
doi: 10.1016/j.neunet.2019.11.001 |
7 |
TAN P , FANG Q Y , ZHAO S N , et al. Causes and mitigation of gas temperature deviation in tangentially fired tower-type boi-lers[J]. Applied Thermal Engineering, 2018, 139, 135- 143.
doi: 10.1016/j.applthermaleng.2018.04.131 |
8 |
国蓉, 何镇安, 王伟. 被动声探测技术与弹着点定位方法综述[J]. 电声技术, 2010, 11, 48- 52.
doi: 10.16311/j.audioe.2010.11.006 |
GUO R , HE Z A , WANG W . Review of passive acoustic localization technique and impact point location methods[J]. Elementary Electroacoustics, 2010, 11, 48- 52.
doi: 10.16311/j.audioe.2010.11.006 |
|
9 | 刘颖. 海上靶场弹着水柱坐标声靶检测与计算方法研究[D]. 太原: 中北大学, 2008. |
LIU Y. The research on impacting point in the water column coordinates measurement and calculation based on the noise test of the shell's explosion in the sea shooting range[D]. Taiyuan: North Central University, 2008. | |
10 | 王松. 基于TDOA的声源定位算法研究与实现[D]. 济南: 山东大学, 2020. |
WANG S. Research and implementation of sound source localization algorithm based on TDOA[D]. Jinan: Shandong University, 2020. | |
11 |
靳莹, 杨润泽. 声测定位技术的现状研究[J]. 电声技术, 2007, 31 (2): 4- 8.
doi: 10.3969/j.issn.1002-8684.2007.02.001 |
JIN Y , YANG R Z . Research status and prospect of the acoustic localization techniques[J]. Elementary Electroacoustics, 2007, 31 (2): 4- 8.
doi: 10.3969/j.issn.1002-8684.2007.02.001 |
|
12 | 赵龙龙, 陈梦英. 基于垂直三元阵的被动定位精度的仿真研究[C]//上海-西安声学学会第四届声学学术交流会论文集, 2015: 33-37. |
ZHAO L L, CHEN M Y. Simulation of passive positioning system based on vertical three-element-array[C]//Proc. of the 4th Acoustics Academic Exchange Conference of Shanghai-Xi'an Acoustical Society, 2015: 33-37. | |
13 |
NIE Z X , WANG B Y , WANG Z J , et al. An offshore real-time precise point positioning technique based on a single set of BeiDou short-message communication devices[J]. Journal of Geodesy, 2020, 94 (9): 78.
doi: 10.1007/s00190-020-01411-6 |
14 |
JIAO G Q , SONG S L , GE Y L , et al. Assessment of BeiDou-3 and multi-GNSS precise point positioning performance[J]. Sensors, 2019, 19 (11): 2496.
doi: 10.3390/s19112496 |
15 |
GENG J H , GUO J . Beyond three frequencies: an extendable model for single-epoch decimeter-level point positioning by exploiting Galileo and BeiDou-3 signals[J]. Journal of Geodesy, 2020, 94 (1): 14.
doi: 10.1007/s00190-019-01341-y |
16 |
LI P , JIANG X Y , ZHANG X H , et al. GPS+Galileo+Bei-Dou precise point positioning with triple-frequency ambiguity resolution[J]. GPS Solutions, 2020, 24, 78.
doi: 10.1007/s10291-020-00992-1 |
17 |
PAN L , ZHANG X H , LI X X , et al. Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo[J]. Advances in Space Research, 2019, 63 (9): 2696- 2710.
doi: 10.1016/j.asr.2017.07.029 |
18 |
YANG Y X , GAO W G , GUO S R , et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, Journal of the Institute of Navigation, 2019, 66 (1): 7- 18.
doi: 10.1002/navi.291 |
19 |
MIAO W K , LI B F , ZHANG Z T , et al. Combined BeiDou-2 and BeiDou-3 instantaneous RTK positioning: stochastic mo-deling and positioning performance assessment[J]. Journal of Spatial Science, 2020, 65 (1): 7- 24.
doi: 10.1080/14498596.2019.1642250 |
20 |
ZHENG F , LOU Y D , GU S F , et al. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning[J]. Journal of Geodesy, 2018, 92 (5): 545- 560.
doi: 10.1007/s00190-017-1080-4 |
21 |
CAO X Y , SHEN F , ZHANG S J , et al. Time delay bias between the second and third generation of BeiDou Navigation Satellite System and its effect on precise point positioning[J]. Measurement, 2021, 168, 108346.
doi: 10.1016/j.measurement.2020.108346 |
22 | WANG S Z, LI Z J, WANG P B, et al. Design of underwater acoustic passive location system for impact point at sea based on the BeiDou difference and dual cross-array[C]//Proc. of the IEEE OES China Ocean Acoustics, 2021: 767-772. |
23 |
ZHAO H W , ZHANG Z C , SHI X Z , et al. A high precision direction-finding method based on multi-baseline for target rescue[J]. Mobile Networks and Applications, 2020, 25, 1793- 1804.
doi: 10.1007/s11036-020-01562-y |
24 |
DOU X J , LIU J , ZHAO H K , et al. Research and design of navigation interference source positioning system based on unmanned aerial vehicle[J]. Journal of Physics: Conference Series, 2020, 1607 (1): 012075.
doi: 10.1088/1742-6596/1607/1/012075 |
25 | LI Y P, ZHAO J Z, JIANG X F, et al. An effective integrated communication and localization method based on digital phased array antenna[C]//Proc. of the IEEE 7th International Conference on Computer and Communications, 2021: 2185-2189. |
26 | QU J S, QU Y X, YANG S S. The error analysis of an underwater acoustic short baseline array detection and location system[C]//Proc. of the IOP Conference Series: Earth and Environmental Science, 2019, 369(1): 012004. |
27 | 姜可宇, 姚直象, 尹敬湘. 一种基于三元阵的水下目标被动定位方法[J]. 兵工学报, 2012, 33 (9): 1107- 1111. |
JIANG K Y , YAO Z X , YIN J X . A passive locating method for underwater target based on three-element-array[J]. Acta Armamentarii, 2012, 33 (9): 1107- 1111. | |
28 | 宋新见. 数字式噪声目标被动测距声纳研究[D]. 哈尔滨: 哈尔滨工程大学, 2004. |
SONG X J. Study on digital noise targets passive ranging sonar[D]. Harbin: Harbin Engineering University, 2004. | |
29 | 吕曜辉. 互谱法被动测距的研究[D]. 哈尔滨: 哈尔滨工程大学, 2006. |
LYU Y H. Research of passive ranging with cross-spectra[D]. Harbin: Harbin Engineering University, 2006. | |
30 | ZINCHENKO S, MOISEIENKO V, TOVSTOKORYI O, et al. Automatic beam aiming of the laser optical reference system at the center of reflector to improve the accuracy and reliability of dynamic positioning[C]//Proc. of the International Conference on Computer Science, Engineering and Education Applications, 2021: 3-14. |
31 |
LIN C S , HUANG Y C , CHEN S H , et al. The application of deep learning and image processing technology in laser position-ing[J]. Applied Sciences, 2018, 8 (9): 1542.
doi: 10.3390/app8091542 |
32 | SAVCHENKO E A, VELICHKO E N, AKSENOV E T, et al. Combined method for laser selection, positioning and analysis of micron and submicron cells and particles[C]//Proc. of the IEEE International Conference Laser Optics, 2018: 539-539. |
33 |
SELAMI Y , TAO W , GAO Q , et al. A scheme for enhancing precision in 3-dimensional positioning for non-contact measurement systems based on laser triangulation[J]. Sensors, 2018, 18 (2): 504.
doi: 10.3390/s18020504 |
34 |
WANG X D , LIU B , MEI X S , et al. An adaptive laser focus auto-positioning method for non-datum complex components based on 3D vision[J]. Optics and Lasers in Engineering, 2022, 149, 106834.
doi: 10.1016/j.optlaseng.2021.106834 |
35 |
ZHANG W G , GUO W , ZHANG C W , et al. An improved method for spot position detection of a laser tracking and positioning system based on a four-quadrant detector[J]. Sensors, 2019, 19 (21): 4722.
doi: 10.3390/s19214722 |
36 |
YAN Y X , ZHENG Y , HUANG Z L . Influence of positioning errors of the laser collimator on the beam shape and coupling efficiency[J]. Optical Fiber Technology, 2020, 58, 102301.
doi: 10.1016/j.yofte.2020.102301 |
37 | YANG J , JACKSON D R . Measurement of sound speed in fine-grained sediments during the seabed characterization expe-riment[J]. IEEE Journal of Oceanic Engineering, 2019, 45 (1): 39- 50. |
38 | YU W W , CHEN N G . Simple sound speed measurement method for liquids and castable phantom materials[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 70, 1- 7. |
39 |
EDWARDS R J , ROTHMAN S D , VOGLER T J , et al. Inferring the high-pressure strength of copper by measurement of longitudinal sound speed in a symmetric impact and release experiment[J]. Journal of Applied Physics, 2019, 125 (14): 145901.
doi: 10.1063/1.5068730 |
40 | KAN G M , ZOU D P , LIU B H , et al. Correction for effects of temperature and pressure on sound speed in shallow seafloor sediments[J]. Marine Georesources & Geotechnology, 2019, 37 (10): 1217- 1226. |
41 |
HABRIOUX M , NASRI D , DARIDON J L . Measurement of speed of sound, density compressibility and viscosity in liquid methyl laurate and ethyl laurate up to 200 MPa by using acoustic wave sensors[J]. The Journal of Chemical Thermodynamics, 2018, 120, 1- 12.
doi: 10.1016/j.jct.2017.12.020 |
42 |
LI B S , CHEN K , KUNG J , et al. Sound velocity measurement using transfer function method[J]. Journal of Physics: Condensed Matter, 2002, 14 (44): 11337.
doi: 10.1088/0953-8984/14/44/478 |
43 |
KEEN K A , THAYRE B J , HILDEBRAND J A , et al. Seismic airgun sound propagation in Arctic Ocean waveguides[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 141, 24- 32.
doi: 10.1016/j.dsr.2018.09.003 |
44 |
COLOSI J A , RUDNICK D L . Observations of upper ocean sound-speed structures in the North Pacific and their effects on long-range acoustic propagation at low and mid-frequencies[J]. The Journal of the Acoustical Society of America, 2020, 148 (4): 2040- 2060.
doi: 10.1121/10.0002174 |
45 |
KHAN S , SONG Y , HUANG J , et al. Analysis of underwater acoustic propagation under the influence of mesoscale ocean vortices[J]. Journal of Marine Science and Engineering, 2021, 9 (8): 799.
doi: 10.3390/jmse9080799 |
46 |
MA X , WANG Y X , ZHU X Q , et al. A spectral method for two-dimensional ocean acoustic propagation[J]. Journal of Marine Science and Engineering, 2021, 9 (8): 892.
doi: 10.3390/jmse9080892 |
47 |
LIN Y T , NEWHALL A E , MILLER J H , et al. A three-dimensional underwater sound propagation model for offshore wind farm noise prediction[J]. The Journal of the Acoustical Society of America, 2019, 145 (5): 335- 340.
doi: 10.1121/1.5099560 |
48 |
LIN Y T . Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation[J]. The Journal of the Acoustical Society of America, 2019, 146 (3): 2058- 2067.
doi: 10.1121/1.5126011 |
49 | VIANA N, GUEDES P, MACHADO D, et al. Underwater acoustic signal detection and identification study for acoustic tracking applications[C]//Proc. of the IEEE OCEANS, 2018. |
50 |
LI G H , CUI J Y , YANG H . A new detecting method for underwater acoustic weak signal based on differential double coupling oscillator[J]. IEEE Access, 2021, 9, 18842- 18854.
doi: 10.1109/ACCESS.2021.3052057 |
51 |
HUANG K , HOSSEIN Z M . Underwater acoustic signal detection and down-conversion using optomechanical resonance and oscillation[J]. Journal of Lightwave Technology, 2020, 38 (14): 3789- 3797.
doi: 10.1109/JLT.2020.2973195 |
52 |
YIN J C , PERAKIS A N , WANG N . A real-time ship roll motion prediction using wavelet transform and variable RBF network[J]. Ocean Engineering, 2018, 160, 10- 19.
doi: 10.1016/j.oceaneng.2018.04.058 |
53 |
LIANG L H , ZHAO P , ZHANG S T , et al. Simulation analysis of fin stabilizer on ship roll control during turning motion[J]. Ocean Engineering, 2018, 164, 733- 748.
doi: 10.1016/j.oceaneng.2018.07.015 |
54 |
SUN J L , LU S X , LO S , et al. Moving characteristics of single file passengers considering the effect of ship trim and heeling[J]. Physica A: Statistical Mechanics and its Applications, 2018, 490, 476- 487.
doi: 10.1016/j.physa.2017.08.031 |
[1] | 胡毅立, 赵永波, 陈胜, 牛奔. 双插值拟合的共形电磁矢量传感器阵列解相干[J]. 系统工程与电子技术, 2022, 44(8): 2393-2402. |
[2] | 虞飞1,2, 陶建武2, 钱立林2, 梁国伟2. 基于声矢量传感器阵列的空速估计算法[J]. 系统工程与电子技术, 2015, 37(5): 1060-1065. |
[3] | 李良群, 谢维信, 黄敬雄, 郝润泽. 被动传感器阵列中基于视线距离的数据关联[J]. Journal of Systems Engineering and Electronics, 2009, 31(4): 952-955. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||