系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (3): 762-768.doi: 10.12305/j.issn.1001-506X.2023.03.17

• 系统工程 • 上一篇    下一篇

基于随机森林的航空安全因果预测新方法

任博1,2,*, 岳珠峰2, 司勇3, 崔利杰1, 曾航1   

  1. 1. 空军工程大学装备管理与无人机工程学院, 陕西 西安 710052
    2. 西北工业大学力学与土木建筑学院, 陕西 西安 710129
    3. 中国人民解放军913129部队, 北京 100076
  • 收稿日期:2021-08-30 出版日期:2023-02-25 发布日期:2023-03-09
  • 通讯作者: 任博
  • 作者简介:任博(1985—), 男, 博士后, 主要研究方向为航空安全、装备安全监测与预警
    岳珠峰(1966—), 男, 教授, 博士, 主要研究方向为飞机结构完整性与结构设计
    司勇(1987—), 男, 工程师, 博士, 主要研究方向为航空装备故障预测与健康管理
    崔利杰(1979—), 男, 副教授, 博士, 主要研究方向为航空安全、安全评价与预警
    曾航(1997—), 男, 博士研究生, 主要研究方向为装备系统工程与决策
  • 基金资助:
    国家自然科学基金(71701210);航空科学基金(20165196017);陕西省自然科学基金(2019JQ-710)

Novel method of aviation safety causality prediction based on random forest

Bo REN1,2,*, Zhufeng YUE2, Yong SI3, Lijie CUI1, Hang ZENG1   

  1. 1. Equipment Management & UAV Engineering College, Air Force Engineering University, Xi'an 710052, China
    2. School of Mechanics, Civil Engineering and Architecture, Northwest Polytechnical University, Xi'an 710129, China
    3. Unit 913129 of the PLA, Beijing 100076, China
  • Received:2021-08-30 Online:2023-02-25 Published:2023-03-09
  • Contact: Bo REN

摘要:

构建精确航空安全预测模型确定事故及其致因因素变化规律, 对航空安全智能管理与主动决策具有重要意义。为此, 提出一种基于Bow-tie模型组合的随机森林算法用于航空安全因果预测, 完成安全预测模型参数优化、致因变量贡献排序。首先, 基于Bow-tie模型开展航空安全致因因素的关联辨识, 确定安全致因变量。其次, 以某航空公司2017~2019年民航安全数据: 管理因素、环境因素、飞机因素、人的因素、外在因素等为研究对象, 基于随机森林构建航空安全因果预测模型, 开展预测变量的重要性分析、模型构建和预测精度分析。结果表明, 该方法能有效预测航空安全关键因素及航空安全态势的变化趋势。同时,该方法与相关向量机、神经网络做了性能对比, 所提模型在预测性能和稳健性均占优。此外, 变量重要性分析结果表明: 环境因素对2017~2019年航空安全影响最大, 需要重点管控; 反之, 管理因素对于航空安全影响最小, 可忽略。

关键词: 航空安全, 因果预测, 随机森林, 变量选择, 重要性分析

Abstract:

The construction of an accurate aviation safety prediction model to determine the change pattern of accidents and their causal factors is of great significance for intelligent management and proactive decision-making in aviation safety. To this end, a random forest algorithm based on a combination of Bow-tie models is proposed in this paper for aviation safety causal prediction, which completes the optimization of safety prediction model parameters and the ranking of causal variable contributions. Firstly, the Bow-tie model is introduced to determine correlation identification of aviation safety causal factors and quantify effects of the input variables to aviation safety. Then, taking the civil aviation safety data of an airline from 2017 to 2019: management factors, environmental factors, aircraft factors, human factors and external factors as the research object, the aviation safety causal prediction model is constructed based on random forest, and the importance analysis, model construction and prediction accuracy analysis of prediction variables are carried out. The results show that the random forest model could effectively predict the key factors of aviation safety and the changing trend of aviation safety, and the robustness and prediction performance are significantly improved from those of other models (support vector machine and artificial neural network model). In addition, the results of variable importance analysis show that environmental factors have the greatest impact on aviation safety from 2017 to 2019 and need to be controlled; on the contrary, management factors have the smallest impact on aviation safety and can be ignored.

Key words: aviation safety, causal prediction, random forest, variable selection, importance analysis

中图分类号: