系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (3): 717-725.doi: 10.12305/j.issn.1001-506X.2023.03.12

• 传感器与信号处理 • 上一篇    下一篇

基于深度残差收缩注意力网络的雷达信号识别方法

曹鹏宇1,*, 杨承志1, 陈泽盛1, 王露2, 石礼盟3   

  1. 1. 空军航空大学航空作战勤务学院, 吉林 长春 130022
    2. 空军航空大学航空基础学院, 吉林 长春 130022
    3. 中国人民解放军93671部队, 河南 南阳 474350
  • 收稿日期:2021-05-18 出版日期:2023-02-25 发布日期:2023-03-09
  • 通讯作者: 曹鹏宇
  • 作者简介:曹鹏宇(1997—), 男, 硕士研究生, 主要研究方向为认知侦察、深度学习
    杨承志(1974—), 男, 教授, 博士, 主要研究方向为认知电子战、信息感知与对抗
    陈泽盛(1997—), 男, 硕士研究生, 主要研究方向为认知干扰、强化学习
    王露(1983—), 女, 讲师, 硕士, 主要研究方向为体育教育训练学、计算机软件、计算机应用
    石礼盟(1995—), 男, 助理工程师, 硕士, 主要研究方向为雷达信号识别、深度学习

Radar signal recognition method based on deep residual shrinkage attention network

Pengyu CAO1,*, Chengzhi YANG1, Zesheng CHEN1, Lu WANG2, Limeng SHI3   

  1. 1. School of Air Operations and Services, Aviation University of Air Force, Changchun 130022, China
    2. School of Aeronautical Foundation, Aviation University of Air Force, Changchun 130022, China
    3. Unit 93671 of the PLA, Nanyang 474350, China
  • Received:2021-05-18 Online:2023-02-25 Published:2023-03-09
  • Contact: Pengyu CAO

摘要:

针对低信噪比条件下雷达信号识别率低, 以及分类网络不具备识别样本库新添加信号类型的局限, 提出了一种基于深度残差收缩注意力网络的雷达信号识别方法。通过网络将一维雷达信号映射到32维向量空间。网络中的残差连接能有效强化特征的传播能力, 解决网络过深无法训练的问题; 注意力机制的引入, 不仅构建掩码支路充当主干支路的特征选择器, 还能够帮助网络自适应地选择合适的阈值进行软阈值化, 从而减少网络中噪声或者冗余信息的影响, 提高网络对噪声的鲁棒性。训练过程中排序表损失(ranked list loss, RLL)和分类损失函数共同指导网络训练。RLL能够有效克服传统度量学习损失函数忽略类内特征的问题, 分类损失函数能够弥补度量损失优化下对样本整体分布不敏感的问题。实验表明, 该方法在提高低信噪比雷达信号识别准确率的同时仍具有识别样本库新添加信号类型的能力。

关键词: 雷达信号识别, 深层残差收缩注意力网络, 软阈值化, 注意力机制, 损失函数

Abstract:

Aiming at the low recognition rate of radar signals under the condition of low signal-to-noise ratio, and the classification network has the limitation of identifying the newly added signal types in the sample library, a radar signal recognition method based on the deep residual shrinking attention network is proposed. The one-dimensional radar signal is mapped to a 32-dimensional vector space through the network. The residual connection in the network can effectively strengthen the dissemination ability of features and solve the problem that the network is too deep to be trained; the introduction of the attention mechanism not only constructs the mask branch to act as the feature selector of the main branch, but also helps the network adaptively select the appropriate threshold for soft thresholding, so as to reduce the influence of noise or redundant information in the network and improve the robustness of the network to noise. During the training process, ranked list loss (RLL) and the classification loss function jointly guide the network training. RLL can effectively overcome the problem of traditional metric learning loss function ignoring features within the class, and the classification loss function can make up for the problem of insensitivity to the overall distribution of the sample under metric loss optimization. Experiments show that this method can not only improve the recognition accuracy of low-signal-to-noise ratio radar signals, but also has the ability to identify newly added signal types in the sample library.

Key words: radar signal recognition, deep residuals shrink attention network, soft thresholding, attention mechanism, loss function

中图分类号: