1 |
WANG Q S , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076
|
2 |
XU X , WANG W , WANG J H . A three-way incremental-learning algorithm for radar emitter identification[J]. Frontiers of Computer Science, 2016, 10 (4): 673- 688.
doi: 10.1007/s11704-015-4457-7
|
3 |
ZHANG C H , HAN Y T , ZAHNG P , et al. Research on modern radar emitter modelling technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, (20): 7134- 7138.
|
4 |
HE M, MAO Y, HAN J. A method of extracting radar inpulse characteristics in low SNR[C]//Proc. of the IEEE International Conference on Signal Processing, 2007.
|
5 |
SHEN J H , HUANG J C , ZHU Y C , et al. Overview of radar signal fast recognition[J]. Electronic Information Warfare Technology, 2017, 32 (5): 5- 10.
|
6 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5
|
7 |
LI L , JI H B . Radar emitter recognition based on cyclostationary signatures and sequential iterative least-square estimation[J]. Expert Systems with Applications, 2011, 38 (3): 2140- 2147.
doi: 10.1016/j.eswa.2010.07.155
|
8 |
O'SHEA T J , ROY T , CLANCY T C . Over the air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022
|
9 |
WANG S H , PHILLIPS P , SUI Y , et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling[J]. Journal of Medical Systems, 2018, 42 (5): 85.
doi: 10.1007/s10916-018-0932-7
|
10 |
YUAN X Y , HE P . Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824.
doi: 10.1109/TNNLS.2018.2886017
|
11 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1026-1034.
|
12 |
刘赢, 田润澜, 王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 1998- 2005.
|
|
LIU Y , TIAN R L , WANG X F . Radar signal recognition method based on deep convolutional neural network and bispectrum feature[J]. Systems Engineering and Electronics, 2019, 41 (9): 1998- 2005.
|
13 |
张怡霄, 郭文普, 康凯, 等. 基于聚类和时序相关的重点雷达信号快速识别[J]. 系统工程与电子技术, 2020, 42 (3): 597- 602.
|
|
ZHANG Y X , GUO W P , KANG K , et al. Key radar signal fast recognition method based on clustering and time-series correlation[J]. Systems Engineering and Electronics, 2020, 42 (3): 597- 602.
|
14 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
|
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
15 |
郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40 (4): 875- 881.
|
|
GUO L M , KOU Y H , CHEN T , et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40 (4): 875- 881.
|
16 |
QU Z H , HOU C F , HOU C G , et al. Radar signal intra-pulse modulation recognition based on convolutional neural network and deep Q-Learning network[J]. IEEE Access, 2020, 8, 49125- 49136.
doi: 10.1109/ACCESS.2020.2980363
|
17 |
石礼盟, 杨承志, 吴宏超. 基于深层残差网络和三元组损失的雷达信号识别方法[J]. 系统工程与电子技术, 2020, 42 (11): 2506- 2512.
|
|
SHI L M , YANG C Z , WU H C . Radar signal recognition method based on deep residual network and triplet loss[J]. Systems Engineering and Electronics, 2020, 42 (11): 2506- 2512.
|
18 |
ZHAO M N , ZHONG S S , FU X Y , et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (7): 4681- 4690.
|
19 |
WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
20 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2016.
|
22 |
SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.
|