系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (3): 708-716.doi: 10.12305/j.issn.1001-506X.2023.03.11
赵庆媛, 赵志强, 叶春茂, 鲁耀兵
收稿日期:
2022-04-01
出版日期:
2023-02-25
发布日期:
2023-03-09
通讯作者:
叶春茂
作者简介:
赵庆媛(1986—), 女, 高级工程师, 硕士,主要研究方向为雷达智能化应用、目标识别Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU
Received:
2022-04-01
Online:
2023-02-25
Published:
2023-03-09
Contact:
Chunmao YE
摘要:
针对预警雷达对气动目标协同识别的需求, 提出一种自适应权重双输入自注意力残差融合识别方法。通过分析不同波段雷达对气动目标的微动差异性, 在传统卷积块注意力模块(convolutional block attention module, CBAM)残差网络的基础上进行针对性改进, 设计加权双输入CBAM(weighted double input-CBAM, WDI-CBAM)残差结构, 对两种波段的时频图浅层特征自动分配权重并融合, 从而均衡不同波段对目标识别的贡献度。仿真和实测数据处理结果表明, WDI-CBAM残差网络训练代价小, 在信噪比较低及驻留时间较短的情况下识别率高。可视化结果进一步证明了所提方法能够合理分配不同波段输入对气动目标分类的重要性。
中图分类号:
赵庆媛, 赵志强, 叶春茂, 鲁耀兵. 基于自注意力的双波段预警雷达微动融合识别[J]. 系统工程与电子技术, 2023, 45(3): 708-716.
Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Micro-motion fusion recognition of double band early warning radar based on self-attention mechanism[J]. Systems Engineering and Electronics, 2023, 45(3): 708-716.
表3
多个算法性能对比"
算法 | 网络结构 | 7类目标准确率/% | 3大类目标准确率/% | 训练轮数 | 参数量(×106) |
1 | 雷达1+ResNet20 | 75.5 | 91.5 | 50 | 0.27 |
2 | 雷达2+ResNet20 | 64.2 | 80.9 | 55 | 0.27 |
3 | 两部雷达+ResNet20决策级融合 | 80.1 | 93.1 | — | — |
4 | 雷达1+SE+ResNet20 | 79.2 | 92.9 | 20 | 0.28 |
5 | 雷达2+SE+ResNet20 | 68.1 | 83.9 | 22 | 0.28 |
6 | 两部雷达SE+ResNet20决策级融合 | 82.9 | 94.2 | — | — |
7 | 雷达1+CBAM+ResNet20 | 81.8 | 93.4 | 15 | 0.28 |
8 | 雷达2+CBAM+ResNet20 | 71.0 | 85.1 | 15 | 0.28 |
9 | 两部雷达CBAM+ResNet20决策级融合 | 83.1 | 96.9 | — | — |
10 | DI+ResNet20 | 84.6 | 94.7 | 60 | 1.09 |
11 | DI-SE+ResNet20 | 85.9 | 95.1 | 25 | 1.12 |
12 | DI-CBAM+ResNet20 | 89.7 | 98.1 | 20 | 1.13 |
13 | WDI-CBAM+ResNet20 | 92.7 | 99.4 | 15 | 1.11 |
14 | DI-CBAM+ResNet32 | 90.0 | 98.1 | 30 | 1.96 |
15 | DI-CBAM+ResNet44 | 90.1 | 98.2 | 42 | 2.74 |
16 | DI-CBAM+ResNet56 | 90.1 | 98.2 | 50 | 3.53 |
17 | WDI-CBAM+ResNet32 | 92.9 | 99.5 | 25 | 1.94 |
18 | WDI-CBAM+ResNet44 | 93.1 | 99.4 | 36 | 2.72 |
19 | WDI-CBAM+ResNet56 | 93.2 | 99.5 | 45 | 3.51 |
20 | 雷达1+调制谱特征 | 49.4 | 70.2 | — | — |
21 | 雷达2+调制谱特征 | 34.6 | 61.4 | — | — |
22 | 双雷达+调制谱特征 | 50.7 | 75.3 | — | — |
23 | 雷达1+时频图特征 | 60.2 | 80.5 | — | — |
24 | 雷达2+时频图特征 | 56.7 | 72.9 | — | — |
25 | 双雷达+时频图特征 | 64.6 | 82.7 | — | — |
表4
不同驻留时间下网络的分类准确率"
性能 | 算法 | 相参积累时间/ms | ||||
20 | 40 | 60 | 80 | 100 | ||
7类目标分类准确率 | 网络7 | 48.1 | 72.7 | 80.9 | 81.8 | 88.3 |
网络8 | 29.7 | 69.6 | 70.1 | 71.0 | 74.8 | |
网络12 | 57.1 | 87.4 | 88.9 | 89.7 | 90.5 | |
网络13 | 64.5 | 89.7 | 92.1 | 92.7 | 93.9 | |
算法22 | 20.7 | 34.9 | 42.8 | 50.7 | 68.7 | |
算法25 | 31.5 | 63.5 | 70.6 | 64.6 | 72.1 | |
3大类目标分类准确率 | 网络7 | 68.9 | 87.6 | 92.6 | 93.4 | 93.5 |
网络8 | 54.1 | 78.9 | 84.7 | 85.1 | 85.1 | |
网络12 | 74.8 | 88.7 | 97.8 | 98.1 | 98.2 | |
网络13 | 85.7 | 90.8 | 98.9 | 99.4 | 99.5 | |
算法22 | 38.9 | 56.3 | 60.7 | 75.3 | 80.5 | |
算法25 | 45.0 | 60.1 | 79.4 | 82.7 | 84.3 |
15 |
ZHU J P , CHEN H Q . A hybrid CNN-LSTM network for the classification of human activities based on micro-Doppler radar[J]. IEEE Access, 2020, 8, 24713- 24720.
doi: 10.1109/ACCESS.2020.2971064 |
16 | WANG M Y , GUI G L , YANG X B , et al. Human body and limb motion recognition via stacked gated recurrent units network[J]. IET Radar, Sonar & Navigation, 2018, 12 (9): 1046- 1051. |
17 |
LANG Y , WANG Q , YANG Y , et al. Person identification with limited training data using radar micro-Doppler signatures[J]. Microwave and Optical Technology Letters, 2020, 62 (3): 1060- 1068.
doi: 10.1002/mop.32125 |
18 |
SEYFIOGLU M , GURBUZ S . Deep neural network initialization methods for micro-Doppler classification with low training sample support[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (12): 2462- 2466.
doi: 10.1109/LGRS.2017.2771405 |
19 |
高诗飏, 董会旭, 田润澜, 等. 基于SRNN+Attention+CNN的雷达辐射源信号识别方法[J]. 系统工程与电子技术, 2021, 43 (12): 3502- 3509.
doi: 10.12305/j.issn.1001-506X.2021.12.11 |
GAO S Y , DONG H X , TIAN R L , et al. Radar emitter signal recognition method based on SRNN+Attention+CNN[J]. Systems Engineering and Electronics, 2021, 43 (12): 3502- 3509.
doi: 10.12305/j.issn.1001-506X.2021.12.11 |
|
20 |
李广帅, 苏娟, 李义红, 等. 基于卷积神经网络与注意力机制的SAR飞机检测[J]. 系统工程与电子技术, 2021, 43 (11): 3202- 3210.
doi: 10.12305/j.issn.1001-506X.2021.11.20 |
LI G S , SU J , LI Y H , et al. Aircraft detection in SAR images based on convolutional neural network and attention mechanism[J]. Systems Engineering and Electronics, 2021, 43 (11): 3202- 3210.
doi: 10.12305/j.issn.1001-506X.2021.11.20 |
|
21 | 曲凌志, 杨俊安, 刘辉, 等. 嵌入注意力机制的通信辐射源个体识别方法[J]. 系统工程与电子技术, 2022, 44 (1): 20- 27. |
QU L Z , YANG J A , LIU H , et al. Method for individual identification of communication radiation source embedded in attention mechanism[J]. Systems Engineering and Electronics, 2022, 44 (1): 20- 27. | |
22 |
LI J , JIN K , ZHOU D L , et al. Attention mechanism-based CNN for facial expression recognition[J]. Neurocomputing, 2020, 411, 340- 350.
doi: 10.1016/j.neucom.2020.06.014 |
23 |
XU H F , CHAI L , LUO Z M , et al. Stock movement predictive network via incorporative attention mechanisms based on tweet and historical prices[J]. Neurocomputing, 2020, 418, 326- 339.
doi: 10.1016/j.neucom.2020.07.108 |
1 | CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in radar: phenomenon model and simulation study[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21. |
2 |
FIORANELLI F , RITCHIE M , GRIFFITHS H . Classification of unarmed/armed personnel using the NetRAD multistatic radar for microDoppler and singular value decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (9): 1933- 1937.
doi: 10.1109/LGRS.2015.2439393 |
3 | RITCHIE M , FIORANELLI F . Multistatic micro-Doppler radar feature extraction for classification of unloaded/loaded micro-drones[J]. IET Radar, Sonar & Navigation, 2017, 11 (1): 116- 124. |
4 | FIORANELLI F , RITCHIE M , GRIFFITHS H . Centroid features for classification of armed/unarmed multiple personnel using multistatic human micro-Doppler[J]. IET Radar, Sonar & Navigation, 2016, 10 (9): 1702- 1710. |
5 | ZHANG P F , GANG L , HUO C Y , et al. Classification of drones based on Micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7 (5): 557- 564. |
6 | ZHOU B Y , LIN Y E , KERNEC J L , et al. Simulation framework for activity recognition and benchmarking in different radar geometries[J]. IET Radar, Sonar & Navigation, 2021, 15 (4): 390- 401. |
7 |
CHEN Z X , LI G , FIORANELLI F , et al. Personnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 669- 673.
doi: 10.1109/LGRS.2018.2806940 |
8 | ZHANG R , LI G , CLEMENTE C , et al. Multi-aspect micro-Doppler signatures for attitude-independent L/N quotient estimation and its application to helicopter classification[J]. IET Radar, Sonar & Navigation, 2017, 11 (4): 701- 708. |
9 | CHEN Z X, LI G, FIORANELLI F, et al. Dynamic hand gesture classification based on multistatic radar Micro-Doppler signatures using convolutional neural network[C]//Proc. of the IEEE Radar Conference, 2019. |
10 | 李明, 吴娇娇, 左磊, 等. 基于实测数据的空中目标分类识别算法[J]. 电子与信息学报, 2018, 40 (11): 2606- 2613. |
LI M , WU J J , ZUO L , et al. Aircraft target classification and re-cognition algorithm based on measured data[J]. Journal of Electronics & Information Technology, 2018, 40 (11): 2606- 2613. | |
11 |
LI X Y , HE Y , JING X J . A survey of deep learning-based human activity recognition in radar[J]. Remote Sensing, 2019, 11 (9): 1068.
doi: 10.3390/rs11091068 |
24 | LEI Y T , DU W W , HU Q H . Face sketch-to-photo transformation with multi-scale self-attention GAN[J]. Neurocomputing, 2020, 396, 13- 23. |
25 | GAO L L , WANG X H , SONG J K , et al. Fused GRU with semantic-temporal attention for video captioning[J]. Neurocomputing, 2020, 395, 222- 228. |
26 | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542. |
27 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
28 | PERRY R P, DIPIETRO R C, FANTE R L. Coherent integration with range migration using keystone formatting[C]//Proc. of the IEEE Radar Conference, 2007: 863-868. |
29 | FU W H , HU Z , LI D . A sorting algorithm for multiple frequency hopping signals in complex electromagnetic environments[J]. Circuits, Systems, and Signal Processing, 2020, 39 (1): 245- 267. |
30 | 陈行勇, 黎湘, 郭桂蓉, 等. 基于旋翼微动雷达特征的空中目标识别[J]. 系统工程与电子技术, 2006, 28 (3): 372- 375. |
CHEN H Y , LI X , GUO G R , et al. Identification of airtarget based on the micromotion radar signatures of blades[J]. Systems Engineering and Electronics, 2006, 28 (3): 372- 375. | |
31 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. |
32 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
33 | ZADEH L A . Review of a mathematical theory of evidence[J]. AI Magazine, 1984, 5 (3): 81- 83. |
34 | SELVARAJU R R , COGSWELL M , DAS A , et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128 (2): 336- 359. |
12 |
GURBUZ S Z , AMIN M G . Radar-based human-motion recognition with deep learning: promising applications for indoor monitoring[J]. IEEE Signal Processing Magazine, 2019, 36 (4): 16- 28.
doi: 10.1109/MSP.2018.2890128 |
13 |
KIM Y , MOON T Y . Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (1): 8- 12.
doi: 10.1109/LGRS.2015.2491329 |
14 | KIM B K , KANG H S , PARK S O . Drone classification using convolutional neural networks with merged Doppler images[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 14 (1): 38- 42. |
35 | TSAO J , STEINBERG B D . Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique[J]. IEEE Trans.on Antennas and Propagation, 1988, 36 (4): 543- 556. |
[1] | 李相海, 杨志伟, 贺顺, 廖桂生, 韩超垒, 姜岩. 基于路网信息辅助的多星编队系统SAR-GMTI动目标径向速度估计与重定位方法[J]. 系统工程与电子技术, 2023, 45(3): 629-637. |
[2] | 唐波, 鲁嘉淇, 郭琨毅, 金从军, 盛新庆. 三元组近场效应的馈电系数修正与各向异性分析[J]. 系统工程与电子技术, 2023, 45(3): 647-653. |
[3] | 禄晓飞, 靳硕静, 洪灵, 戴奉周. 基于聚类求解TVAR模型的目标微多普勒分析[J]. 系统工程与电子技术, 2023, 45(3): 660-668. |
[4] | 张育豪, 朱圣棋, 曾操, 崔森, 石琦剑. EPC-MIMO雷达主瓣距离欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2023, 45(3): 690-698. |
[5] | 王安安, 谢文冲, 陈威, 熊元燚, 王永良. 双基地机载雷达杂波和主瓣压制干扰抑制方法[J]. 系统工程与电子技术, 2023, 45(3): 699-707. |
[6] | 朱晓秀, 刘利民, 胡文华, 郭宝锋, 史林, 朱瀚神. 基于GTD模型的多视角多频带ISAR融合成像[J]. 系统工程与电子技术, 2023, 45(3): 726-735. |
[7] | 张俊玲, 董玫, 陈伯孝. 基于可调Q因子小波变换的海杂波抑制算法[J]. 系统工程与电子技术, 2023, 45(2): 343-351. |
[8] | 邱祥风, 姜卫东, 张新禹, 霍凯, 刘永祥. 认知MIMO雷达发射波形与接收滤波器联合优化设计方法[J]. 系统工程与电子技术, 2023, 45(2): 386-393. |
[9] | 饶云华, 朱华梁, 郑志杰. 基于合作目标的外辐射源雷达发射站直接定位[J]. 系统工程与电子技术, 2023, 45(2): 394-400. |
[10] | 刘智星, 全英汇, 沙明辉, 方文, 高霞, 邢孟道. 载频-重频联合捷变雷达目标参数估计方法[J]. 系统工程与电子技术, 2023, 45(2): 401-406. |
[11] | 赵庆媛, 赵志强, 叶春茂, 鲁耀兵. 基于调制谱超分辨重构的微多普勒参数估计[J]. 系统工程与电子技术, 2023, 45(2): 407-415. |
[12] | 黎鑫, 夏晓云, 张玉石, 水鹏朗. 海面背景下弱目标RCS估计及特性分析[J]. 系统工程与电子技术, 2023, 45(2): 424-430. |
[13] | 安雷, 李召瑞, 吉兵. 杂波环境下可移动主被动传感器长时调度方法[J]. 系统工程与电子技术, 2023, 45(1): 165-174. |
[14] | 吕岩, 曹菲, 许剑锋, 冯晓伟. 基于FRFT的单基地MIMO雷达稳健波束形成算法[J]. 系统工程与电子技术, 2023, 45(1): 79-85. |
[15] | 詹珩艺, 李亚超, 武春风, 宋炫, 张廷豪. 弹载双基前视成像雷达解析-迭代定位方法[J]. 系统工程与电子技术, 2023, 45(1): 71-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||