1 |
黄谟涛, 翟国君, 管铮, 等. 海洋重力场确定及其应用[M]. 北京: 测绘出版社, 2005.
|
|
HUANG M T , ZHAI G J , GUAN Z , et al. The determination and application of marine gravity field[M]. Beijing: Surveying and Mapping Press, 2005.
|
2 |
LU B , BARTHELEMS F , LI M , et al. Shipborne gravimetry in the Baltic Sea: data processing strategies, crucial findings and preliminary geoid determination tests[J]. Journal of Geodesy, 2019, 93 (7): 1059- 1071.
doi: 10.1007/s00190-018-01225-7
|
3 |
陆飚, 钟波, 罗志才. 波罗的海地区高精度海洋重力测量数据处理与分析[J]. 武汉大学学报(信息科学版), 2021, 46 (8): 1139- 1147.
|
|
LU B , ZHONG B , LUO Z C . High-accuracy marine gravity measurement data processing and analysis in the Baltic Sea[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (8): 1139- 1147.
|
4 |
KEMENY R . Fight for the Arctic Ocean is a boon for science[J]. Science, 2019, 364 (6446): 1120- 1121.
doi: 10.1126/science.364.6446.1120
|
5 |
陈上及. 海洋数据处理分析方法及其应用[M]. 北京: 海洋出版社, 1991.
|
|
CHEN S J . The data processing, analysis and application of marine gravity[M]. Beijing: China Ocean Press, 1991.
|
6 |
孙鹤洋, 金涛勇, 赵闯. 融合卫星测高和船测重力数据的非均匀密度点质量方法[J]. 测绘地理信息, 2021, 46 (4): 17- 22.
|
|
SUN H Y , JIN T Y , ZHAO C . A non-uniform density distributed point-mass method for the fusion of altimetric and shipborne gravity[J]. Journal of Geomatics, 2021, 46 (4): 17- 22.
|
7 |
刘志鑫, 孟小红, 王俊, 等. 海域重力场解算中垂线偏差方法的并行化改进[J]. 地球物理学进展, 2022, 37 (1): 413- 420.
|
|
LIU Z X , MENG X H , WANG J , et al. Parellelization improvement of vertical deviation method in the calculation of sea gravity field[J]. Progress in Geophysics, 2022, 37 (1): 413- 420.
|
8 |
吴燕雄, 滕云田, 吴琼, 等. 船载绝对重力仪测量系统的误差修正模型及不确定度分析[J]. 武汉大学学报(信息科学版), 2022, 47 (4): 492- 500.
|
|
WU Y X , TENG Y T , WU Q , et al. Error correction model and accuracy analysis of the shipborne absolute gravity measurement system[J]. Geomatics and Information Science of Wuhan University, 2022, 47 (4): 492- 500.
|
9 |
ZHANG S J , ABULAITIJIANG A , ANDERSEN O B , et al. Comparison and evaluation of high-resolution marine gravity recovery via sea surface heights or sea surface slopes[J]. Journal of Geodesy, 2021, 95 (6): 66.
doi: 10.1007/s00190-021-01506-8
|
10 |
宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34 (3): 67- 72.
|
|
NING J S , HUANG M T , OUYANG Y Z , et al. Development of marine and airborne gravity measurement technologies[J]. Hydrographic Surveying and Charting, 2014, 34 (3): 67- 72.
|
11 |
赵德军, 孙中苗, 赵东明. 基于因子克里金分析方法的航空重力梯度降噪[J]. 中国惯性技术学报, 2021, 29 (1): 48- 54.
|
|
ZHAO D J , SUN Z M , ZHAO D M . Noise reduction for airborne gravity gradient based on factor Kriging analysis method[J]. Journal of Chinese Inertial Technology, 2021, 29 (1): 48- 54.
|
12 |
VSN A , VTP A , LVNA B , et al. Marine gravity anomaly mapping for the Gulf of Tonkin area (Vietnam) using Cryosat-2 and Saral/AltiKa satellite altimetry data-ScienceDirect[J]. Advances in Space Research, 2020, 66 (3): 505- 519.
|
13 |
LI Z , LIU X , GUO J Y , et al. Performance of Jason-2/GM altimeter in deriving marine gravity with the waveform derivative retracking method: a case study in the South China Sea[J]. Arabian Journal of Geosciences, 2020, 13 (18): 939.
|
14 |
钟波. 基于GOCE卫星重力测量技术确定地球重力场的研究[D]. 武汉: 武汉大学, 2010.
|
|
ZHONG B. Study on the determination of the earth's gravity field from satellite gravimetry mission GOCE[D]. Wuhan: Wuhan University, 2010.
|
15 |
瞿庆亮, 常晓涛, 朱广彬, 等. 基于地面重力的卫星重力梯度检校方法[J]. 地球物理学报, 2021, 64 (8): 2590- 2598.
|
|
QU Q L , CHANG X T , ZHU G B , et al. Calibration of satellite gravity gradients based on ground gravity data[J]. Chinese Journal of Geophysics, 2021, 64 (8): 2590- 2598.
|
16 |
HUNNEGNAW A , HIPKIN R G , EDWARDS J . A method of error adjustment for marine gravity with application to mean dynamic topography in the Northern North Atlantic[J]. Journal of Geodesy, 2009, 83 (2): 161.
|
17 |
蔡劭琨, 吴美平, 张开东, 等. 经验模态分解在动态重力测量数据处理中的应用[J]. 海洋测绘, 2015, 35 (4): 7- 11.
|
|
CAI S K , WU M P , ZHANG K D , et al. Application of EMD in data processing of dynamic gravimetry[J]. Hydrographic Surveying and Charting, 2015, 35 (4): 7- 11.
|
18 |
董庆亮, 陈洁, 潘乐, 等. 基于DTU重力数据检查海洋重力测量成果的质量[J]. 海洋测绘, 2020, 40 (2): 33- 36.
|
|
DONG Q L , CHEN J , PAN L , et al. Assessment of the quality of marine gravity measurements based on the DTU model data[J]. Hydrographic Surveying and Charting, 2020, 40 (2): 33- 36.
|
19 |
黄谟涛, 刘敏, 孙岚, 等. 海洋重力测量动态环境效应分析与补偿[J]. 海洋测绘, 2015, 35 (1): 1- 6.
|
|
HUANG M T , LIU M , SUN L , et al. Compensation and ana-lysis of dynamic environment effect on marine gravimetry[J]. Hydrographic Surveying and Charting, 2015, 35 (1): 1- 6.
|
20 |
欧阳永忠. 海空重力测量数据处理关键技术研究[D]. 武汉: 武汉大学, 2013.
|
|
OUYANG Y Z. On key technologies of data processing for air-sea gravity surveys[D]. Wuhan: Wuhan University, 2013.
|
21 |
蔡劭琨. 航空重力矢量测量及误差分离方法研究[D]. 长沙: 国防科技大学, 2014.
|
|
CAI S K. The research about airborne vector gravimetry and methods of errors separation[D]. Changsha: National University of Defense Technology.
|
22 |
孙中苗, 夏哲仁. FIR低通差分器的设计及其在航空重力测量中的应用[J]. 地球物理学报, 2000, 43 (6): 850- 855.
|
|
SUN Z M , XIA Z R . Design of FIR lowpass differentiator and its application in airborne gravimetry[J]. Chinese Journal of Geophysics, 2000, 43 (6): 850- 855.
|
23 |
严飞, 李达, 李中, 等. 一种用于重力梯度动态测量的载体环境引力梯度补偿方法[J]. 中国惯性技术学报, 2020, 28 (1): 20- 26.
|
|
YAN F , LI D , LI Z , et al. Compensation method of carrier environmental gravity gradient for dynamic measurement of gravity gradient[J]. Journal of Chinese Inertial Technology, 2020, 28 (1): 20- 26.
|
24 |
黄谟涛, 陈欣, 邓凯亮, 等. 补偿海空重力测量动态效应剩余影响的通用模型[J]. 测绘学报, 2020, 49 (2): 135- 146.
|
|
HUANG M T , CHEN X , DENG K L , et al. A general model for compensating remainder dynamic environment effect on marine and airborne gravimetry[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49 (2): 135- 146.
|
25 |
孙鹤泉, 金绍华, 张宇. 基于MODWT变换的海洋重力观测航行数据滤波方法[J]. 海洋通报, 2020, 39 (4): 426- 430.
|
|
SUN H Q , JIN S H , ZHANG Y . MODWT transform applied to navigation data filtering in ocean gravity observation[J]. Marine Science Bulletin, 2020, 39 (4): 426- 430.
|