系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (3): 638-646.doi: 10.12305/j.issn.1001-506X.2023.03.03

• 电子技术 • 上一篇    下一篇

基于DQN的探测干扰一体化波形优化设计

陈涛1,2, 张颖1,2,*, 胡学晶1,2, 肖易寒1,2   

  1. 1. 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
    2. 哈尔滨工程大学先进船舶通信与信息技术工业和信息化部重点实验室, 黑龙江 哈尔滨 150001
  • 收稿日期:2021-12-14 出版日期:2023-02-25 发布日期:2023-03-09
  • 通讯作者: 张颖
  • 作者简介:陈涛(1974—), 男, 教授, 博士, 主要研究方向为被动雷达导引头、电子侦察、人工智能
    张颖(1995—), 女, 硕士研究生, 主要研究方向为雷达信号干扰、一体化信号波形设计
    胡学晶(1992—), 女, 博士研究生, 主要研究方向为雷达干扰波形设计
    肖易寒(1980—), 女, 副教授, 博士, 主要研究方向为图像信号处理、雷达信号处理、深度学习技术
  • 基金资助:
    上海航天科技创新基金(SAST2022-063);国防科技基础加强计划(2019-JCJQ-ZD-067-00)

Integrated waveform optimization design of detection and jamming based on DQN

Tao CHEN1,2, Ying ZHANG1,2,*, Xuejing HU1,2, Yihan XIAO1,2   

  1. 1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
    2. Key Laboratory of Advanced Marine Communication and Information Technology of Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China
  • Received:2021-12-14 Online:2023-02-25 Published:2023-03-09
  • Contact: Ying ZHANG

摘要:

由于侦察干扰机设备具有发射功能, 为使发射的干扰信号还具有探测的效果,考虑将探测信号隐藏在干扰信号中, 提出一种基于非均匀间歇采样重复转发的探测干扰一体化信号波形。首先,建立一体化信号模型, 并利用非均匀间歇采样重复转发技术实现幅度编码调制;然后,在优化过程中,从模糊函数以及雷达检测环节分析一体化信号的特征, 根据距离、速度分辨率以及脉压后幅度的均值与标准差之比,构造相应的目标函数;最后,利用深度Q学习算法求解目标函数, 获取最优的幅度编码方式。仿真结果表明, 当编码状态量小时, 深度Q网络(deep Q-network, DQN)算法与强化学习算法收敛效果一致。与遗传算法相比, DQN算法最优解的质量提高了13.10%;当编码状态量增大时, 相对于遗传算法和强化学习算法, DQN算法的收敛值更优, 最优解更稳定。

关键词: 探测干扰一体化信号, 非均匀间歇采样重复转发, 模糊函数, 脉冲幅度编码, 深度Q学习

Abstract:

In view that the reconnaissance jammer has the transmitting function, with the aim that the transmitted interference signal can also have the detection effect. The detection signal can be hidden in the jamming signal. A detection and jamming integrated signal waveform based on non-uniform intermittent sampling and repeated forwarding is proposed. Firstly, an integrated signal model is established, and then the non-uniform intermittent sampling and repeating forwarding technology is used to realize amplitude coding modulation. Secondly, in the optimization process, the characteristics of the integrated signal are analyzed from the fuzzy function and the radar detection link, and the corresponding objective function is constructed according to the distance, velocity resolution, and the ratio of the mean value to the standard deviation value of the post-pulse compression amplitude. Finally, the deep Q-learning algorithm is used to solve the objective function to obtain the optimal amplitude coding. The simulation results show that when the number of coding states is small, the convergence effect of deep Q-network(DQN) algorithm is consistent with that of the reinforcement learning algorithm. Compared with the genetic algorithm, the quality of optimal solution of DQN algorithm is improved by 13.10%. When the number of coding states increases, compared with genetic algorithm and reinforcement learning algorithm, the convergence value of DQN algorithm is larger and the optimal solution is more stable.

Key words: detection and jamming integrated signal, non-uniform intermittent sampling and repeated forwarding, fuzzy function, pulse amplitude coding, deep Q-learning

中图分类号: