系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (2): 513-520.doi: 10.12305/j.issn.1001-506X.2023.02.23

• 制导、导航与控制 • 上一篇    

改进A*算法的机器人能耗最优路径规划方法

张浩杰1,*, 张玉东1, 梁荣敏1, 杨甜甜2   

  1. 1. 北京科技大学自动化学院工业过程知识自动化教育部重点实验室, 北京 100083
    2. 中国兵器科学研究院兵器技术创新中心, 北京 100089
  • 收稿日期:2021-07-01 出版日期:2023-01-13 发布日期:2023-02-04
  • 通讯作者: 张浩杰
  • 作者简介:张浩杰 (1986—), 男, 副教授, 博士, 主要研究方向为无人车及机器人的决策规划
    张玉东 (1997—), 男, 硕士研究生, 主要研究方向为地面无人平台能耗最优规划
    梁荣敏 (1997—), 男, 硕士研究生, 主要研究方向为地面无人平台路径规划
    杨甜甜 (1980—), 女, 研究员, 博士, 主要研究方向为地面无人平台决策与协同控制技术
  • 基金资助:
    国家级重点实验室基金(KJW6142210210308);国家自然科学基金青年科学基金(61806183)

Energy-efficient path planning method for robots based on improved A* algorithm

Haojie ZHANG1,*, Yudong ZHANG1, Rongmin LIANG1, Tiantian YANG2   

  1. 1. Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2. Weapon Technology Innovation Center, Ordnance Science and Research Academy of China, Beijing 100089, China
  • Received:2021-07-01 Online:2023-01-13 Published:2023-02-04
  • Contact: Haojie ZHANG

摘要:

为了降低移动机器人在运动过程中的能耗, 提高在能源补给有限时的任务执行率, 提出了一种改进A*算法的机器人能耗最优路径规划方法。首先, 根据四轮差速驱动移动机器人的运动学约束, 建立了其运动的能耗模型。然后, 根据起始状态和目标状态约束求解生成运动基元, 采用能耗模型计算运动基元的能耗值, 构建了能耗运动基元集。其次, 基于传统A*算法, 改进提出了一种能耗最优路径规划方法, 该方法在规划进程中以能耗运动基元集中定义的节点之间的连接关系进行节点扩展, 而以能耗值作为节点之间的通行成本, 从而保证获得一条全局能耗最优路径。最后, 离线地图仿真测试和机器人实验结果表明所生成的路径总能耗可降低约28.24%, 从而验证了算法的有效性。

关键词: 路径规划, 改进A*算法, 能耗模型, 能耗运动基元

Abstract:

In order to reduce the energy consumption during the robot movements and increase the task execution rate with limit energy supply, an energy-efficient path planning method is proposed based on improved A* algorithm for mobile robots. Firstly, the energy consumption model of four-wheel differential drive robot is established according to its kinematic constraints. Secondly, the motion primitive of the robot is solved by given the start and goal states. The energy consumption motion primitive set is constructed after using the energy consumption model to calculate the cost of each motion primitive. Thirdly, the energy efficient path planning method is proposed based on the traditional A* algorithm. In the planning process, the nodes are expanded using the defined connection relationship in energy consumption motion primitive set and the energy consumption is treated as the cost between them, which guarantees to find a global energy efficient path. Finally, the offline map simulation test and robotic experiment results show that the energy cost of the generated path is reduced by about 28.24%. Therefore, the effectiveness of the algorithm is verified.

Key words: path planning, improved A* algorithm, energy consumption model, energy consumption motion primitive

中图分类号: