系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (2): 444-452.doi: 10.12305/j.issn.1001-506X.2023.02.15
• 系统工程 • 上一篇
茹鑫鑫, 高晓光, 王阳阳
收稿日期:
2022-01-24
出版日期:
2023-01-13
发布日期:
2023-02-04
通讯作者:
高晓光
作者简介:
茹鑫鑫 (1993—), 男, 博士研究生, 主要研究方向为贝叶斯网络参数学习基金资助:
Xinxin RU, Xiaoguang GAO, Yangyang WANG
Received:
2022-01-24
Online:
2023-01-13
Published:
2023-02-04
Contact:
Xiaoguang GAO
摘要:
针对小样本下贝叶斯网络参数学习结果不准确的问题, 提出一种模糊最大后验估计方法, 该方法将模糊理论引入到参数学习中, 通过对约束效力的度量, 利用隶属度函数来确定超参进行学习, 以提高约束使用的准确性。实验证明, 所提方法可以有效提高参数学习的精度。除此之外, 将所提方法应用到网络安全评估中, 将通用漏洞评分系统作为专家先验参数, 结合漏洞信息迁移样本来进行参数学习。最后, 通过节点和路径安全评估验证了所提方法的有效性。
中图分类号:
茹鑫鑫, 高晓光, 王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45(2): 444-452.
Xinxin RU, Xiaoguang GAO, Yangyang WANG. Bayesian network parameter learning based on fuzzy constraints[J]. Systems Engineering and Electronics, 2023, 45(2): 444-452.
表3
100样本量KL对比"
BNs | MLE | MAP | CMLE | QMAP | FMAP |
Earthquake | 1.173 3±0.766 6 | 0.348 1±0.057 5 | 0.044 2±0.022 7 | 0.105 4±0.047 8 | 0.080 5±0.032 8 |
Cancer | 0.846 7±0.744 7 | 0.844 0±0.097 4 | 0.104 2±0.035 4 | 0.052 9±0.043 1 | 0.049 8±00.000 1 |
Sachs | 0.983 2±0.235 8 | 0.392 1±0.024 4 | 0.352 6±0.099 5 | 0.198 3±0.027 8 | 0.147 3±0.010 3 |
Boerlage92 | 1.217 9±0.216 1 | 0.332 7±0.022 5 | 0.143 8±0.088 2 | 0.142 3±0.024 2 | 0.072 9±0.014 8 |
Win95pts | 0.582 8±0.110 6 | 0.329 9±0.007 2 | 0.293 9±0.057 0 | 0.233 0±0.013 0 | 0.213 3±0.004 5 |
Andes | 1.005 2±0.067 4 | 0.394 2±0.005 6 | 0.161 9±0.020 5 | 0.172 8±0.009 5 | 0.132 5±0.004 1 |
均值 | 0.968 2 | 0.440 2 | 0.183 4 | 0.150 8 | 0.116 1 |
表4
300样本量KL对比"
BNs | MLE | MAP | CMLE | QMAP | FMAP |
Earthquake | 0.936 7±0.898 3 | 0.406 6±0.065 0 | 0.014 8±0.011 4 | 0.121 5±0.049 2 | 0.060 0±0.019 7 |
Cancer | 0.470 2±0.442 8 | 0.416 5±0.083 4 | 0.059 9±0.032 1 | 0.036 7±0.017 9 | 0.020 6±00.001 0 |
Sachs | 0.603 3±0.155 3 | 0.430 9±0.029 8 | 0.183 4±0.080 0 | 0.126 2±0.019 4 | 0.089 8±0.008 4 |
Boerlage92 | 0.510 7±0.188 7 | 0.365 7±0.020 0 | 0.030 2±0.034 5 | 0.076 2±0.020 5 | 0.023 9±0.005 7 |
Win95pts | 0.653 8±0.086 7 | 0.350 5±0.004 8 | 0.381 1±0.060 2 | 0.212 7±0.012 5 | 0.173 6±0.004 8 |
Andes | 0.698 2±0.051 1 | 0.429 6±0.005 4 | 0.159 5±0.016 7 | 0.118 7±0.007 0 | 0.064 7±0.002 9 |
均值 | 0.645 5 | 0.416 7 | 0.138 2 | 0.115 3 | 0.072 1 |
表5
500样本量KL对比"
BNs | MLE | MAP | CMLE | QMAP | FMAP |
Earthquake | 0.377 4±0.364 4 | 0.431 5±0.058 2 | 0.014 2±0.016 2 | 0.083 4±0.028 4 | 0.056 6±0.014 1 |
Cancer | 0.285 2±0.302 4 | 0.179 3±0.071 6 | 0.050 1±0.031 4 | 0.030 9±0.021 8 | 0.008 0±0.000 1 |
Sachs | 0.437 3±0.106 2 | 0.477 8±0.019 8 | 0.136 1±0.038 4 | 0.093 7±0.013 4 | 0.065 4±0.007 4 |
Boerlage92 | 0.259 4±0.103 2 | 0.369 3±0.013 8 | 0.009 3±0.003 2 | 0.041 7±0.012 9 | 0.010 4±0.002 5 |
Win95pts | 0.722 9±0.092 3 | 0.377 2±0.004 4 | 0.453 4±0.058 6 | 0.207 5±0.014 0 | 0.153 2±0.002 3 |
Andes | 0.466 3±0.038 0 | 0.447 4±0.006 2 | 0.109 1±0.015 8 | 0.083 1±0.005 4 | 0.039 3±0.002 5 |
均值 | 0.424 8 | 0.380 5 | 0.128 7 | 0.090 1 | 0.055 5 |
表6
噪音约束下100样本量结果对比"
BNs | CMLE | QMAP | FMAP |
Earthquake | 0.834 2± 0.563 1 | 0.117 0± 0.041 1 | 0.073 8± 0.041 7 |
Cancer | 0.578 4± 0.355 7 | 0.075 3± 0.054 0 | 0.054 7± 0.040 5 |
Sachs | 0.679 7± 0.138 5 | 0.194 3± 0.019 2 | 0.144 6± 0.008 4 |
Boerlage92 | 0.911 8± 0.216 6 | 0.153 2± 0.029 8 | 0.075 4± 0.011 8 |
Win95pts | 0.352 2± 0.055 6 | 0.226 4± 0.009 7 | 0.214 7± 0.004 6 |
Andes | 0.476 9± 0.045 5 | 0.190 3± 0.009 7 | 0.133 7± 0.003 1 |
均值 | 0.638 9 | 0.159 4 | 0.116 2 |
表7
噪音约束下300样本量结果对比"
BNs | CMLE | QMAP | FMAP |
Earthquake | 0.494 7± 0.439 7 | 0.124 3± 0.059 8 | 0.065 3± 0.017 4 |
Cancer | 0.373 5± 0.306 9 | 0.063 8± 0.028 4 | 0.014 7± 0.016 5 |
Sachs | 0.394 0± 0.107 9 | 0.149 5± 0.021 0 | 0.095 0± 0.010 8 |
Boerlage92 | 0.292 1± 0.098 5 | 0.081 0± 0.018 3 | 0.031 2± 0.006 9 |
Win95pts | 0.436 2± 0.049 3 | 0.210 6± 0.010 9 | 0.177 9± 0.004 1 |
Andes | 0.293 2± 0.024 2 | 0.119 9± 0.008 5 | 0.068 0± 0.004 0 |
均值 | 0.380 6 | 0.124 9 | 0.075 4 |
表8
噪音约束下500样本量结果"
BNs | CMLE | QMAP | FMAP |
Earthquake | 0.063 1± 0.095 5 | 0.109 0± 0.041 5 | 0.059 2± 0.019 6 |
Cancer | 0.108 4± 0.145 4 | 0.047 6± 0.018 1 | 0.009 2± 0.006 5 |
Sachs | 0.288 5± 0.046 6 | 0.110 3± 0.015 2 | 0.062 8± 0.009 4 |
Boerlage92 | 0.144 1± 0.062 8 | 0.050 7± 0.009 5 | 0.016 6± 0.003 7 |
Win95pts | 0.501 0± 0.044 2 | 0.207 0± 0.010 6 | 0.154 8± 0.002 8 |
Andes | 0.196 7± 0.023 3 | 0.100 3± 0.006 9 | 0.040 4± 0.002 8 |
均值 | 0.217 0 | 0.107 5 | 0.057 2 |
表9
100样本量下各算法运行时间"
BNs | MLE | MAP | CMLE | QMAP | FMAP |
Earthquake | 0.001 7±0.000 2 | 0.001 7±0.000 3 | 1.494 4±0.024 5 | 0.002 1±0.000 1 | 0.002 8±0.000 5 |
Cancer | 0.001 7±0.000 3 | 0.001 7±0.000 4 | 1.491 9±0.033 9 | 0.002 1±0.000 1 | 0.002 8±0.000 4 |
Sachs | 0.015 5±0.000 7 | 0.015 5±0.000 7 | 3.840 7±0.048 5 | 0.016 4±0.001 2 | 0.037 2±0.002 5 |
Boerlage92 | 0.011 7±0.002 2 | 0.012 1±0.001 5 | 7.383 4±0.077 3 | 0.012 5±0.000 7 | 0.024 0±0.001 7 |
Win95pts | 0.070 5±0.004 8 | 0.072 2±0.003 9 | 23.420 1±0.362 1 | 0.089 3±0.003 7 | 0.159 4±0.007 7 |
Andes | 0.172 7±0.016 0 | 0.174 6±0.013 5 | 77.730 0±6.792 5 | 0.197 9±0.016 0 | 0.343 2±0.031 3 |
均值 | 0.045 8 | 0.046 3 | 19.226 8 | 0.053 38 | 0.094 9 |
表10
500样本量下各算法运行时间"
BNs | MLE | MAP | CMLE | QMAP | FMAP |
Earthquake | 0.009 1±0.000 4 | 0.010 1±0.000 6 | 1.513 4±0.020 0 | 0.010 8±0.001 9 | 0.010 8±0.001 6 |
Cancer | 0.008 8±0.000 3 | 0.009 0±0.000 4 | 1.479 7±0.015 1 | 0.009 9±0.000 6 | 0.010 1±0.000 3 |
Sachs | 0.142 2±0.004 9 | 0.143 8±0.003 2 | 4.010 5±0.066 7 | 0.150 9±0.008 6 | 0.163 9±0.006 2 |
Boerlage92 | 0.091 0±0.002 3 | 0.092 8±0.003 3 | 7.393 6±0.077 6 | 0.093 7±0.002 5 | 0.105 5±0.004 9 |
Win95pts | 0.609 4±0.027 2 | 0.684 2±0.008 9 | 23.928 4±0.266 8 | 0.904 3±0.011 9 | 1.687 7±0.016 4 |
Andes | 1.198 2±0.018 8 | 1.207 6±0.026 9 | 72.800 6±2.923 1 | 1.615 7±0.027 2 | 2.381 7±0.017 7 |
均值 | 0.052 0 | 0.055 0 | 18.521 0 | 1.792 0 | 3.966 0 |
表11
漏洞信息及约束"
H | CVE | CVSS约束 |
H2 | CVE-2018-6036 | P(H2=1|Π1=1)=0.75 |
H3 | CVE-2017-14827 | P(H3=1|Π3=1)=0.68 |
H4 | CVE-2017-1336 | P(H4=1|Π4=1)=0.36 |
H5 | CVE-2017-11887 | P(H5=1|Π5=1)=0.26 |
H6 | CVE-2019-1010156 | P(H6=1|Π6=1)=0.64 |
H7 | CVE-2014-1761 | P(H7=1|Π7=1)=0.93 |
H8 | CVE-2018-16844 | P(H8=1|Π8=1)=0.78 |
H9 | CVE-2016-10627 | P(H9=1|Π9=1)=0.63 |
H10 | CVE-2016-3454 | P(H10=1|Π10=1)=0.76 |
H11 | CVE-2017-16375 | P(H11=1|Π11=1)=0.93 |
H12 | CVE-2018-12498 | P(H12=1|Π12=1)=0.75 |
H13 | CVE-2015-7994 | P(H13=1|Π13=1)=0.75 |
H14 | CVE-2019-1010246 | P(H14=1|Π14=1)=0.55 |
H15 | CVE-2017-8620 | P(H15=1|Π15=1)=0.93 |
H16 | CVE-2017-11873 | P(H16=1|Π16=1)=0.76 |
1 | PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference[M]. San Mateo: Morgan Kaufmann, 1988. |
2 |
ZHANG Y , WENG W G . Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference[J]. Reliability Engineering System Safety, 2020, 203, 107089.
doi: 10.1016/j.ress.2020.107089 |
3 | ZHANG T Q , ZHANG T F , LI C C , et al. Complementary and alternative therapies for precancerous lesions of gastric cancer: a protocol for a Bayesian network meta analysis[J]. Medicine, 2021, 100 (2): 20249. |
4 |
WANG Z D , GAO X G , TAN X Y , et al. Learning Bayesian networks based on order graph with ancestral constraints[J]. Knowledge-Based Systems, 2021, 211, 106515.
doi: 10.1016/j.knosys.2020.106515 |
5 | TAN X Y , GAO X G , WANG Z D , et al. Bidirectional heuristic search to find the optimal Bayesian network structure[J]. Neurocomputing, 2020, 41 (426): 35- 46. |
6 |
LIU X H , GAO X G , WANG Z D , et al. Improved local search with momentum for Bayesian networks structure learning[J]. Entropy, 2021, 23 (6): 750- 769.
doi: 10.3390/e23060750 |
7 | 曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42 (3): 646- 652. |
ZENG Q , HUANG Z , WEI S H . Bayesian network parameter learning method based on expert priori knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42 (3): 646- 652. | |
8 | 柴慧敏, 赵昀瑶, 方敏. 利用先验正态分布贝叶斯网络参数学习[J]. 系统工程与电子技术, 2018, 40 (10): 2370- 2375. |
CHAI H M , ZHAO Y Y , FANG M . Bayesian network parameter learning method based on expert priori knowledge of normal distribution[J]. Systems Engineering and Electronics, 2018, 40 (10): 2370- 2375. | |
9 |
PLATAS L , MEZURA M , CRUZ R , et al. Discriminative learning of Bayesian network parameters by differential evolution[J]. Applied Mathematical Modelling, 2021, 93, 244- 256.
doi: 10.1016/j.apm.2020.12.026 |
10 |
DI R H , GAO X G , GUO Z G . Learning Bayesian network parameters under new monotonic constraints[J]. Journal of Systems Engineering and Electronics, 2017, 28 (6): 1248- 1255.
doi: 10.21629/JSEE.2017.06.22 |
11 | COOPER G F , HERSKOVITS E . A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9 (4): 309- 347. |
12 |
REDNER R A . Mixture densities, maximum likelihood and the EM algorithm[J]. SIAM Review, 1984, 26 (2): 195- 239.
doi: 10.1137/1026034 |
13 |
GAO X G , GUO Z G , REN H , et al. Learning Bayesian network parameters via minimax algorithm[J]. International Journal of Approximate Reasoning, 2019, 108, 62- 75.
doi: 10.1016/j.ijar.2019.03.001 |
14 | CAMPOS C, TONG Y, JI Q. Constrained maximum likelihood learning of Bayesian networks for facial action recognition[C]//Proc. of the European Conference on Computer Vision, 2008: 168-181. |
15 |
GAO X G , YANG Y , GUO Z G . Learning Bayesian networks by constrained Bayesian estimation[J]. Journal of Systems Engineering and Electronics, 2019, 30 (3): 511- 524.
doi: 10.21629/JSEE.2019.03.09 |
16 |
DI R H , WANG P , HE C C , et al. Constrained adjusted maximum a posteriori estimation of Bayesian network parameters[J]. Entropy, 2021, 23 (10): 1283- 1299.
doi: 10.3390/e23101283 |
17 |
YANG Y , GAO X G , GUO Z G , et al. Learning Bayesian networks using the constrained maximum a posteriori probability method[J]. Pattern Recognition, 2019, 91, 123- 134.
doi: 10.1016/j.patcog.2019.02.006 |
18 |
GUO Z G , GAO X G , REN H , et al. Learning Bayesian network parameters from small data sets: a further constrained qualitatively maximum a posteriori method[J]. International Journal of Approximate Reasoning, 2017, 91, 22- 35.
doi: 10.1016/j.ijar.2017.08.009 |
19 |
ROGER L , ENRIQUE S . Inductive transfer for learning Bayesian networks[J]. Machine Learning, 2010, 79 (1-2): 227- 255.
doi: 10.1007/s10994-009-5160-4 |
20 |
KOVACIC J . Learning parameters of Bayesian networks from datasets with systematically missing data: a meta-analytic approach[J]. Expert Systems with Application, 2020, 141, 112956.
doi: 10.1016/j.eswa.2019.112956 |
21 | CHEN G J , GE Z Q . Robust Bayesian networks for low-quality data modeling and process monitoring applications[J]. Control Engineering Practice, 2020, 97 (4): 104344. |
22 |
YUAN P , SUN Y F , LI H , et al. Abnormal condition identification modeling method based on Bayesian network parameters transfer learning for the electro-fused magnesia smelting process[J]. IEEE Access, 2019, 7, 149764- 149775.
doi: 10.1109/ACCESS.2019.2947499 |
23 | 闫浩, 王福利, 孙钰沣, 等. 基于贝叶斯网络参数迁移学习的电熔镁炉异常工况识别[J]. 自动化学报, 2021, 47 (1): 197- 208. |
YAN H , WANG F L , SUN Y F , et al. Abnormal condition identification based on Bayesian network parameters transfer learning for the electro-fused magnesia[J]. Acta Automatica Sinica, 2021, 47 (1): 197- 208. | |
24 | HOU Y Y , ZHENG E R , GUO W Q , et al. Learning Bayesian network parameters with small data set: a parameter extension under constraints method[J]. IEEE Access, 2020, 99, 24979- 24989. |
25 | ZADEH L A . Fuzzy sets[J]. Information & Control, 1965, 8 (3): 338- 353. |
26 | SCUTARI M. Bnlearn-an R package for Bayesian network learning and inference[EB/OL]. [2021-12-1]. http://www.bnlearn.com/bnrepository. |
27 | KEVIN M. Bayes net toolbox for Matlab[EB/OL]. [2021-11-1]. https://github.com/bayesnet/bnt. |
28 | KOLLER D . Probabilistic graphical models: principles and techniques[M]. Cambridge: MIT Press, 2009. |
29 | 吴晨思, 谢卫强, 姬逸潇, 等. 网络系统安全度量综述[J]. 通信学报, 2019, 40 (6): 14- 31. |
WU C S , XIE W Q , JI Y X , et al. Survey on network system security metrics[J]. Journal on Communications, 2019, 40 (6): 14- 31. | |
30 | 黄克振, 连一峰, 冯登国, 等. 一种基于图模型的网络攻击溯源方法[J]. 软件学报, 2022, 33 (2): 683- 698. |
HUANG K Z , LIAN Y F , FENG D G , et al. Method of cyber attack attribution based on graph model[J]. Journal of Software, 2022, 33 (2): 683- 698. | |
31 | 符永铨, 赵辉, 王晓锋, 等. 网络行为仿真综述[J]. 软件学报, 2022, 33 (1): 274- 296. |
FU Y Q , ZHAO H , WANG X F , et al. State-of-the-art survey on network behavior emulation[J]. Journal of Software, 2022, 33 (1): 274- 296. | |
32 | MELL P , SCARFONE K , ROMANOSKY S . Common vulnerability acoring system[J]. IEEE Security & Privacy, 2007, 4 (6): 85- 89. |
[1] | 李懿凡, 钱华明, 黄洪钟, 张庭瑜, 黄土地. 基于广义连续时间贝叶斯网络的指挥控制网络系统可靠性分析[J]. 系统工程与电子技术, 2022, 44(12): 3880-3886. |
[2] | 王鹏, 孙紫荆, 张帆, 肖国松. 考虑概率型共因失效的多阶段任务系统可靠性分析模型[J]. 系统工程与电子技术, 2022, 44(12): 3887-3898. |
[3] | 乔殿峰, 梁彦, 马超雄, 杨心语, 汪冕, 李建国. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022, 44(11): 3403-3412. |
[4] | 刘延钊, 黄志球, 沈国华, 王金永, 徐恒. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44(10): 3143-3154. |
[5] | 赵禄达, 王斌. 基于RS-DBN的电子对抗目标清单生成方法[J]. 系统工程与电子技术, 2021, 43(9): 2373-2382. |
[6] | 陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
[7] | 孙雪, 黄志球, 沈国华, 王金永, 徐恒. 基于本体和BN的无人车行为决策方法[J]. 系统工程与电子技术, 2021, 43(2): 452-465. |
[8] | 赵长啸, 李浩, 董磊, 王鹏. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42(5): 1083-1092. |
[9] | 曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42(3): 646-652. |
[10] | 孟光磊, 周铭哲, 朴海音, 张慧敏. 基于协同战术识别的双机编队威胁评估方法[J]. 系统工程与电子技术, 2020, 42(10): 2285-2293. |
[11] | 孙海文, 谢晓方, 孙涛, 张龙杰. 小样本数据缺失状态下DBN舰艇编队防空目标威胁评估方法[J]. 系统工程与电子技术, 2019, 41(6): 1300-1308. |
[12] | 吕学志, 胡晓峰, 吴琳, 贺筱媛. 基于改进竞争性假设分析的战役企图分析方法[J]. 系统工程与电子技术, 2019, 41(3): 555-563. |
[13] | 刘久富, 丁晓彬, 郑锐, 王彪, 刘海阳, 王志胜. 混沌量子粒子群的权重类条件贝叶斯网络分类器参数学习[J]. 系统工程与电子技术, 2019, 41(10): 2304-2309. |
[14] | 李明, 张韧, 洪梅, 白成祖. 基于信息流改进的贝叶斯网络结构学习算法[J]. 系统工程与电子技术, 2018, 40(6): 1385-1390. |
[15] | 高晓光, 叶思懋, 邸若海, 寇振超. 基于融合先验方法的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2018, 40(4): 790-796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||