1 |
LI K , BO J , WANG P H , et al. Radar active antagonism through deep reinforcement learning: a way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186 (4): 108130.
|
2 |
JIANG J W , WANG H Y , WU Y H , et al. Optimization method for multiple phases sectionalized modulation jamming against linear frequency modulation radar based on a genetic algorithm[J]. IEEE Access, 2020, 8, 88777- 88792.
doi: 10.1109/ACCESS.2020.2994084
|
3 |
DU C J , TANG B . Novel unconventional active-jamming recognition method for wideband radars based on visibility graphs[J]. Sensors, 2019, 19 (10): 2344.
doi: 10.3390/s19102344
|
4 |
CHEN J , XU S Y , ZOU J Z , et al. Interrupted-sampling repeater jamming suppression based on stacked bidirectional gated recurrent unit network and infinite training[J]. IEEE Access, 2019, 7, 107428- 107437.
doi: 10.1109/ACCESS.2019.2932793
|
5 |
GRECO M , GINI F , FAFINA A . Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Trans.on Signal Processing, 2008, 56 (6): 1984- 1993.
|
6 |
DOBRE O A , ABDI A , BAR-NESS Y , et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IET Communications, 2007, 1 (2): 137- 156.
doi: 10.1049/iet-com:20050176
|
7 |
AZZOUZ E E , NANDI A K . Automatic identification of digital modulation type[J]. Signal Processing, 1995, 47 (1): 55- 69.
doi: 10.1016/0165-1684(95)00099-2
|
8 |
朱峰, 蒋倩倩, 林川, 等. 基于支持向量机的典型宽带电磁干扰源识别[J]. 系统工程与电子技术, 2021, 43 (9): 2400- 2406.
|
|
ZHU F , JIANG Q Q , LIN C , et al. Typical wideband EMI identification based on support vector machine[J]. Systems Engineering and Electronics, 2021, 43 (9): 2400- 2406.
|
9 |
WEI D X , ZHANG S N , CHEN S , et al. Research on anti-jamming technology of chaotic composite short range detection signal separation and spectral analysis[J]. IEEE Access, 2019, 7, 42298- 42308.
doi: 10.1109/ACCESS.2019.2907621
|
10 |
ZHOU H P , DONG C C , WU R W , et al. Feature fusion based on bayesian decision theory for radar deception jamming recognition[J]. IEEE Access, 2021, 9, 16296- 16304.
doi: 10.1109/ACCESS.2021.3052506
|
11 |
TANG Z, ZHANG B, LI G Q. Radar active blanket jamming sorting based on resemblance coefficient cluster[C]//Proc. of the IEEE International Conference on Signal Processing, Communication and Computing, 2013.
|
12 |
FU R R. Compound jamming signal recognition based on neural networks[C]//Proc. of the IEEE 6th International Conference on Instrumentation & Measurement, Computer, Communication and Control, 2016: 737-740.
|
13 |
HAO Z M , YU W , CHEN W . Recognition method of dense false targets jamming based on time-frequency atomic decomposition[J]. The Journal of Engineering, 2019, 2019 (20): 6354- 6358.
doi: 10.1049/joe.2019.0147
|
14 |
KOTB A , ABDULAZIZ A M . Cavitation detection in variable speed pump by analyzing the acoustic and vibration spectrums[J]. Engineering, 2015, 7 (10): 706.
doi: 10.4236/eng.2015.710062
|
15 |
HINTON G , DENG L , YU D , et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29 (6): 82- 97.
doi: 10.1109/MSP.2012.2205597
|
16 |
LIU Q, ZHANG W. Deep learning and recognition of radar jamming based on CNN[C]//Proc. of the IEEE 12th International Symposium on Computational Intelligence and Design, 2019: 208-212.
|
17 |
SHAO G Q , CHEN Y , WEI Y . Convolutional neural network-based radar jamming signal classification with sufficient and limited samples[J]. IEEE Access, 2020, 8, 80588- 80598.
doi: 10.1109/ACCESS.2020.2990629
|
18 |
刘国满, 聂旭娜. 一种基于卷积神经网络的雷达干扰识别算法[J]. 北京理工大学学报, 2021, 41 (9): 990- 998.
|
|
LIU G M , NIE X N . A radar jamming recognition algorithm based on neural network[J]. Transactions of Beijing Institute of Technology, 2021, 41 (9): 990- 998.
|
19 |
WANG F , HUANG S S , LIANG C . Automatic jamming mo-dulation classification exploiting convolutional neural network for cognitive radar[J]. Mathematical Problems in Engineering, 2020, 2020, 9148096.
|
20 |
秦鑫, 黄洁, 查雄. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
|
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
21 |
QU Q Z , WEI S J , LIU S , et al. JRNet: jamming recognition networks for radar compound suppression jamming signals[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (12): 15035- 15045.
doi: 10.1109/TVT.2020.3032197
|
22 |
孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43 (1): 42- 47.
|
|
SUN Y C , TIAN R L , WANG X F , et al. Emitter signal recog-nition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43 (1): 42- 47.
|
23 |
魏晓良, 潮群, 陶建峰, 等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42 (3): 43876.
|
|
WEl X L , CHAO Q , TAO J F , et al. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (3): 423876.
|
24 |
赵国庆. 雷达对抗原理[M]. 西安: 西安电子科技大学出版社, 2012: 122- 123.
|
|
ZHAO G Q . Principle of radar coun-termeasure[M]. Xi'an: Xidian University Press, 2012: 122- 123.
|
25 |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proc. of the European Conference on Computer Vision, 2014: 818-833.
|
26 |
LE Q Y , HAO C , QI D , et al. Automated melanoma recognition in dermoscopy images via very deep residual networks[J]. IEEE Trans.on Medical Imaging, 2017, 36 (4): 994- 1004.
doi: 10.1109/TMI.2016.2642839
|
27 |
YONG B Z , LU S , CHENG Y , et al. Adaptive residual networks for high-quality image restoration[J]. IEEE Trans.on Image Processing, 2018, 27 (7): 3150- 3163.
doi: 10.1109/TIP.2018.2812081
|
28 |
SONG X Y , LIU Y T , XUE L , et al. Time-series well performance prediction based on long short-term memory(LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2019, 186, 106682.
|
29 |
HE J , WANG L Q , LIU L , et al. Long document classification from local word glimpses via recurrent attention learning[J]. IEEE Access, 2019, 7, 40707- 40718.
|
30 |
LU Y , ZHOU J H , DAI H , et al. Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM[J]. IEEE Access, 2019, 7, 38856- 38866.
|