1 |
GUNZINGER M, AUTENRIED L. Understanding the promise of skyborg and low-cost attritable unmanned aerial vehicles[R]. Arlington, Virginia: Mitchell Institute for Aerospace Studies, 2020.
|
2 |
BIRKEY D, DUPTULA D, STUTZRIEM L. Manned-unmanned aircraft teaming: taking combat airpower to the next level[R]. Arlington, Virginia: Mitchell Institute for Aerospace Studies, 2018.
|
3 |
GAYDOS S J , CURRY I P . Manned-unmanned teaming: expanding the envelope of uas operational employment[J]. Aviation, Space, and Environmental Medicine, 2014, 85 (12): 1231- 1232.
doi: 10.3357/ASEM.4164.2014
|
4 |
TAYLOR G S, TURPIN T. Army aviation manned-unmanned teaming (MUM-T): past, present, and future[C]//Proc. of the 18th International Symposium on Aviation Psychology, 2015: 560-565.
|
5 |
Office of the Undersecretary of Defense for Acquisition, Technology, & Logistics. Unmanned systems integrated roadmap FY2011-2036[R]. Washington DC: United States Air Force Office of the Chief Scientist, 2011.
|
6 |
ENDSLEY M R. Autonomous horizons: system autonomy in the Air Force-a path to the future, Volume Ⅰ: human-autonomy teaming[R]. Washington DC: Office of the USAF Chief Scientist, 2015.
|
7 |
CRAWLEY E, CAMERON B, SELVA D. 系统架构: 复杂系统的产品设计与开发[M]. 爱飞翔, 译. 北京: 机械工业出版社, 2017: 34-38.
|
|
CRAWLEY E, CAMERON B, SELVA D. System architecture: strategy and product development for complex system[M]. AI F X, trans. Beijing: China Machine Press, 2017: 34-38.
|
8 |
DOUGLASS B P. 敏捷系统工程[M]. 张新国, 谷炼, 译. 北京: 清华大学出版社, 2018: 139-142.
|
|
DOUGLASS B P. Agile systems engineering[M]. ZHANG X G, GU L, trans. Beijing: Tsinghua University Press, 2018: 139-142.
|
9 |
HOBBS E S, CARGAL C, FERONX E. Early safety analysis of manned-unmanned team system[C]//Proc. of the AIAA Information Systems-AIAA Infotech @ Aerospace, 2018.
|
10 |
ESTEFAN J A. Survey of model-based systems engineering (MBSE) methodologies[R]. San Diego, California: International Council on Systems Engineering, 2008.
|
11 |
LUMMUS R. Mission battle management system fighter engagement manager concept[C]//Proc. of the AIAA/ICAS International Air and Space Symposium and Exposition, 2003: AIAA 2003-2857.
|
12 |
HUMPHREYS C J, COBB R G, JACQUES DR, et al. Optimal mission paths for the uninhabited loyal wingman[C]//Proc. of the 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015.
|
13 |
ESHEL T. Kratos demonstrates cooperation of 2 UCAVs with manned aircraft[EB/OL]. [2022-03-15]. https://defense-update.com/20151208_utap-22.html.
|
14 |
AIRBUS. Future combat air system (FCAS)[EB/OL]. [2022-03-15]. https://www.airbus.com/defence/fcas.html.
|
15 |
俄罗斯卫星通讯社. 俄罗斯"猎人"最新型无人机与苏-57战斗机联合飞行[EB/OL]. [2022-03-15]. https://sputniknews.cn/video/201909301029698731/.
|
|
Sputnik News. Newest 'Okhotnik' UAV of Russia flight with Su-57 fighter[EB/ OL]. [2022-03-15]. https://sputniknews.cn/video/201909301029698731/.
|
16 |
BOEING. Airpower teaming system[EB/OL]. [2022-03-15]. http://www.boeing.com/defense/airpower-teaming-system/.
|
17 |
BALTIÉ J, BENSANA E, FABIANI P, et al. Mission mana-gement system for package of unmanned combat aerial vehicles[EB/OL]. [2022-03-15]. philippe.morignot.free.fr/Articles/MissionManagementTexteCAR.pdf.
|
18 |
WASSON C S . System analysis, design and development: concepts, principles, and practices[M]. Hoboken, New Jersey: John Wiley & Sons, 2006: 217- 228.
|
19 |
International Council on Systems Engineering (INCOSE) . Systems engineering handbook: a guide for system life cycle processes and activities[M]. 4th ed Hoboken, New Jersey: John Wiley & Sons, 2015: 57- 64.
|
20 |
付昭旺, 寇英信, 于雷, 等. 有人/无人战斗机协同空战模式及能力需求分析[J]. 火力与指挥控制, 2012, 37 (1): 73- 77.
|
|
FU Z W , KOU Y X , YU L , et al. Operational modes and capability requirements for cooperative air combat of manned vehicle and unmanned vehicle[J]. Fire Control & Command Control, 2012, 37 (1): 73- 77.
|
21 |
FREY M A, SCHULTE A. Tactical decision support for UAV deployment in MUM-T helicopter missions: problem analysis and system requirements[C]//Proc. of the IEEE Conference on Cognitive and Computational Aspects of Situation Management, 2018.
|
22 |
FRIEDENTHAL S , MOORE A , STEINER R . A practical guide to SysML: the systems modeling language[M]. 3rd ed California: Morgan Kaufmann, 2015.
|
23 |
HOFFMANN H P. System engineering best practices with the rational solution for systems and software engineering deskbook, release 4.1[EB/OL]. [2022-03-15]. https://www.ibm.com/docs/en/rhapsody/8.3?topic=secsyscontroller-harmony-process.
|
24 |
MORKEVICIUS A, ALEKSANDRAVICIENE A, MAZEIKA D, et al. MBSE Grid: a simplified SysML-based approach for modeling complex systems[EB/OL]. [2022-03-15]. https://doi.org/10.1002/j.2334-5837.2017.00350.x.
|
25 |
MICHELSON S, DOMERCANT C. Concepts for manned unmanned teaming behaviors in model based systems engineering[C]// Proc. of the Ground Vehicle Systems Engineering and Technology Symposium, 2019.
|
26 |
GE Aviation. U.S. Air Force Research Lab awards GE TEAMS program[EB/OL]. [2023-03-15]. suasnews.com/2019/01/u-s-air-force-research-lab-awards-ge-teams-program.
|
27 |
PLATTS J T . Autonomy in unmanned air vehicles[J]. The Aeronautical Journal, 2006, 110 (1104): 97- 105.
doi: 10.1017/S0001924000001044
|
28 |
SCHAUB G J, KRISTOFFERSEN J W. In, on, or out of the loop: denmark and autonomous weapon systems[R]. Copenhagen: Centre for Military Studies at the University of Copenhagen, 2017.
|
29 |
SHERIDAN T B . Telerobotics, automation, and human supervisory control[M]. Cambridge, Massachusetts: The MIT Press, 1992.
|
30 |
Headquarters , Department of the Army . ADP 5-0: the operations process[M]. Washington, DC: Department of the Army, 2012.
|
31 |
XIONG P S, LIU H, TIAN Y L. Mission effectiveness evaluation of manned/unmanned aerial team based on OODA and agent-based simulation[C]//Proc. of the 3rd International Conference on Artificial Intelligence and Virtual Reality, 2019.
|
32 |
LEE J Y. Expanded kill chain analysis of manned-unmanned teaming for future strike operations[D]. Monterey, California: Naval Postgraduate School, 2014: 54-57.
|