1 |
滕小虎. 雷达电子对抗技术及其运用研究[J]. 数字技术与应用, 2019, 37 (5): 102- 103.
|
|
TENG X H . Research on radar electronic countermeasure technology and its application[J]. Digital Technology and Application, 2019, 37 (5): 102- 103.
|
2 |
LI M. Design of radar countermeasure reconnaissance and interference system[C]//Proc. of the 6th International Conference on Measurement, Instrumentation and Automation, 2017.
|
3 |
MI X J , LYU T X , TIAN Y , et al. Multi-sensor data fusion based on soft likelihood functions and OWA aggregation and its application in target recognition system[J]. ISA Transactions, 2021, 112, 137- 149.
doi: 10.1016/j.isatra.2020.12.009
|
4 |
WANG J Y , YU Q Z . A dynamic multi-sensor data fusion approach based on evidence theory and WOWA operator[J]. Applied Intelligence, 2020, 50 (11): 3837- 3851.
doi: 10.1007/s10489-020-01739-8
|
5 |
田威, 黄高明. 非理想关联下多传感器系统误差的稳健估计[J]. 电子与信息学报, 2018, 40 (3): 641- 647.
|
|
TIAN W , HUANG G M . Robust estimation of multi-sensor system error under non-ideal correlation[J]. Journal of Electronics & Information Technology, 2018, 40 (3): 641- 647.
|
6 |
朱垲, 宋欣, 何建祥, 等. 基于小波降噪和自适应加权法的温室数据融合[J]. 江苏农业科学, 2021, 49 (5): 180- 186.
|
|
ZHU K , SONG X , HE J X , et al. Greenhouse data fusion based on wavelet denoising and adaptive weighting method[J]. Jiangsu Agricultural Sciences, 2021, 49 (5): 180- 186.
|
7 |
戴海发, 卞鸿巍, 王荣颖, 等. 一种改进的多传感器数据自适应融合方法[J]. 武汉大学学报(信息科学版), 2020, 45 (10): 1602- 1609.
|
|
DAI H F , BIAN H W , WANG R Y , et al. An improved multi-sensor data adaptive fusion method[J]. Journal of Wuhan University (Information Science Edition), 2020, 45 (10): 1602- 1609.
|
8 |
GELB A . Applied optimal estimation[M]. Cambridge: MIT Press, 2002.
|
9 |
DING W D , WANG J L , RIZOS C , et al. Improving adaptive Kalman estimation in GPS/INS integration[J]. Journal of Navigation, 2007, 60 (3): 517- 529.
doi: 10.1017/S0373463307004316
|
10 |
LUO R C , YIH C C , SU K L . Multisensor fusion and integration: approaches, applications, and future research directions[J]. IEEE Sensors Journal, 2002, 2 (2): 107- 119.
doi: 10.1109/JSEN.2002.1000251
|
11 |
WU S L , BI Y X , ZENG X Q , et al. Assigning appropriate weights for the linear combination data fusion method in information retrieval[J]. Information Processing and Management, 2009, 45 (4): 413- 426.
doi: 10.1016/j.ipm.2009.02.003
|
12 |
敬如雪, 高玉琢. 基于多传感器的数据融合算法研究[J]. 现代电子技术, 2020, 43 (10): 10- 13.
|
|
JING R X , GAO Y Z . Research on data fusion algorithm based on multi-sensor[J]. Modern Electronic Technology, 2020, 43 (10): 10- 13.
|
13 |
王华, 邓军, 王连华, 等. 改进的一致性数据融合算法及其应用[J]. 中国矿业大学学报, 2009, 38 (4): 590- 594.
|
|
WANG H , DENG J , WANG L H , et al. Improved consistent data fusion algorithm and its application[J]. Journal of China University of Mining & Technology, 2009, 38 (4): 590- 594.
|
14 |
YU Y J , LIU X Q , XU C N , et al. Multi-sensor data fusion algorithm based on the improved weighting factor[J]. Journal of Physics: Conference Series, 2021, 1754 (1): 012227.
|
15 |
张军, 杨子晨. 多传感器数据采集系统中的数据融合研究[J]. 传感器与微系统, 2014, 33 (3): 52- 54.52-54, 57
|
|
ZHANG J , YANG Z C . Research on data fusion in multi-sensor data acquisition system[J]. Sensors and Microsystems, 2014, 33 (3): 52- 54.52-54, 57
|
16 |
FAN W L, MA X M. Dielectric loss angle data processing based on adaptive weighted data fusion algorithm of the aging mine cable[C]//Proc. of the 29th Chinese Control and Decision Conference, 2017: 5739-5742.
|
17 |
罗中良, 张前进, 方清城, 等. 智能仪表中的一种数据融合方法[J]. 仪表技术与传感器, 2002, 3, 45- 46.
|
|
LUO Z L , ZHANG Q J , FANG Q C , et al. A data fusion method in smart meters[J]. Instrument Technology and Sensors, 2002, 3, 45- 46.
|
18 |
GAO S S , ZHONG Y M , LI W . Random weighting method for multisensor data fusion[J]. IEEE Sensors Journal, 2011, 11 (9): 1955- 1961.
|
19 |
程曦, 周国正, 唐西明, 等. 基于涡流技术的燃料棒氧化膜测量信号有效性评估与统计[J]. 核动力工程, 2020, 41 (1): 49- 53.
|
|
CHENG X , ZHOU G Z , TANG X M , et al. Evaluation and statistics of the measurement signal validity of fuel rod oxide film based on eddy current technology[J]. Nuclear Power Engineering, 2020, 41 (1): 49- 53.
|
20 |
杨锡运, 张璜, 关文渊, 等. 基于滑动分块百分位数Bootstrap法的风电功率概率区间预测[J]. 太阳能学报, 2019, 40 (2): 430- 437.
|
|
YANG X Y , ZHANG H , GUAN W Y , et al. Wind power probability interval prediction based on sliding block percentile Bootstrap method[J]. Acta Solar Energy, 2019, 40 (2): 430- 437.
|
21 |
司刚全, 张寅松, 娄勇. 考虑自支持度和互支持度的多传感器一致性测度算子[J]. 西安交通大学学报, 2012, 46 (10): 20- 23.20-23, 35
|
|
SI G Q , ZHANG Y S , LOU Y . Multi-sensor consistency measure operator considering self-support and mutual support[J]. Journal of Xi'an Jiaotong University, 2012, 46 (10): 20- 23.20-23, 35
|