1 |
SONGJ,XUY H,LIG H.An accurate parameter estimator for LFM signals based on zoom modified discrete chirp Fourier transform[J].IAENG International Journal of Computer Science,2019,46(3):78-85.
|
2 |
CUIY,WANGJ F.Wideband LFM interference suppression based on fractional Fourier transform and projection techniques[J].Circuits Systems & Signal Processing,2014,33(2):613-627.
|
3 |
YINJ W,GUOK,HANX,et al.Fractional Fourier transform based underwater multi-targets direction-of-arrival estimation using wideband linear chirps[J].Applied Acoustics,2020,169(1):107477.
|
4 |
LIUY F,ZHAOY,ZHUJ,et al.Iterative high-accuracy parameter estimation of uncooperative OFDM-LFM radar signals based on FrFT and fractional autocorrelation interpolation[J].Sensors,2018,18(10):3550.
doi: 10.3390/s18103550
|
5 |
李军,林秋华,杨秀庭,等.近场宽带LFM信号被动测向和测距方法[J].系统工程与电子技术,2016,38(8):1737-1743.
|
|
LIJ,LINQ H,YANGX T,et al.Passive DOA and range estimation method for near-field broadband LFM signals[J].Systems Engineering and Electronics,2016,38(8):1737-1743.
|
6 |
ARABH,DUFOURS,MOLDOVANE,et al.Accurate and robust CW-LFM radar sensor: transceiver front-end design and implementation[J].IEEE Sensors Journal,2019,19(5):1943-1950.
doi: 10.1109/JSEN.2018.2885048
|
7 |
LIUY F,ZHAOY,ZHUJ,et al.A switched element system based direction of arrival (DOA) estimation method for un-cooperative wideband orthogonal frequency division multi linear frequency modulation radar signals[J].Sensors,2019,19(1):132.
doi: 10.3390/s19010132
|
8 |
WANGH Y,JIANGY C.Real-time parameter estimation for SAR moving target based on Wigner-Ville distribution slice and fractional Fourier transform[J].Electronics Letters,2017,54(1):47-49.
|
9 |
BAO Q L, QIAO Y T, CHEN Z P. A novel detection method based on FrFT for passive radar[C]//Proc. of the IEEE Progress in Electromagnetic Research Symposium, 2016.
|
10 |
MA Y, WANG R, DU J X. Amplitude characteristics of linear frequency modulation signal in FRFT domain[C]//Proc. of the IEEE International Conference on Signal and Image Processing Applications, 2013.
|
11 |
AHMADM I.Optimum FrFT domain cyclostationarity based adaptive beamforming[J].Signal Image and Video Processing,2019,13(3):551-556.
doi: 10.1007/s11760-018-1381-y
|
12 |
SREEKUMARG,LEENAM,UNNIKRISHNANA.Performance analysis of fractional Fourier domain beam-forming methods for sensor arrays[J].Smart Science,2019,7(1):28-38.
doi: 10.1080/23080477.2018.1531611
|
13 |
LI X K, JIA H J, YANG M. Underwater target detection based on fourth-order cumulant beamforming[C]//Proc. of the IEEE 174th Meeting of the Acoustical Society of America, 2017.
|
14 |
YETIKI S,NEHORAIA.Beamforming using the fractional Fourier transform[J].IEEE Trans.on Signal Processing,2003,51(6):1663-1668.
doi: 10.1109/TSP.2003.811223
|
15 |
WU H E, TAO R. LCMV beamforming algorithm based on the fractional Fourier transform[C]//Proc. of the IEEE International Conference on Communications Circuits and Systems, 2007.
|
16 |
DUL,LIJ,STOICAP.Fully automatic computation of diagonal loading levels for robust adaptive beamforming[J].IEEE Trans.on Aerospace and Electronic Systems,2010,46(1):449-458.
doi: 10.1109/TAES.2010.5417174
|
17 |
KEY X,ZHENGC S,PENGR H,et al.Robust adaptive beamforming using noise reduction preprocessing-based fully automatic diagonal and steering vector estimation[J].IEEE Access,2017,5,12974-12987.
doi: 10.1109/ACCESS.2017.2725450
|
18 |
ZHANGM,CHENX M,ZHANGA X.A simple tridiagonal loading method for robust adaptive beamforming[J].Signal Processing,2019,157,103-107.
doi: 10.1016/j.sigpro.2018.11.019
|
19 |
GERSHMAN A B, LUO Z Q, SHAHBAZPANAHI S, et al. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[C]//Proc. of the IEEE Conference on Signals, Systems & Computers, 2003.
|
20 |
GUY J,LESHEMA.Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J].IEEE Trans.on Signal Processing,2012,60(7):3881-3885.
doi: 10.1109/TSP.2012.2194289
|
21 |
ZHANGZ Y,LIUW,LENGW,et al.Interference plus noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming[J].IEEE Signal Processing Letters,2015,23(1):121-125.
|
22 |
ZHANGZ,ZHANGY,WANGW Q,et al.Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming[J].IEEE Trans.on Vehicular Technology,2018,67(9):8495-8503.
doi: 10.1109/TVT.2018.2849646
|
23 |
QIUT S,LIL.A novel joint parameter estimation method based on fractional ambiguity function in bistatic multiple-input multiple-output radar system[J].Computers & Electrical Engineering,2013,39(4):1248-1259.
|
24 |
徐丽琴, 李勇, 刘有耀, 等. 单基地MIMO雷达波束空间共轭ESPRIT角度估计方法[
|
|
EB/OL]. [2021-09-06]. DOI: 10.13229/j.cnki.jdbgxb20210010.XULQ,LIY,LIUYY,etal.BeamspaceconjugateESPRITforangleestimationinmonostaticMIMOradar[EB/OL].[2021-09-06].DOI:10.13229/j.cnki.jdbgxb20210010.
|
25 |
LUJ,YANGJ,LIUX H,et al.Robust direction of arrival estimation approach for unmanned aerial vehicles at low signal-to-noise ratios[J].IET Signal Processing,2019,13(4):456-463.
doi: 10.1049/iet-spr.2018.5275
|
26 |
YANGJ,LIUX X,YANGB,et al.Detection and speed estimation of moving target based on phase compensation and coherent accumulation using fractional fourier transform[J].Sensors,2020,20(5):1410-1426.
doi: 10.3390/s20051410
|
27 |
LU J, YANG J, LIU X X. Robust adaptive beamforming of LFM signals based on interference-plus-noise covariance matrix reconstruction in fractional Fourier domain[C]//Proc. of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 2020.
|
28 |
GRANT M, BOYD S, YE Y. CVX: Matlab software for disciplined convex programming[EB/OL]. [2021-09-06]. http://cvxr.com/cvx.
|
29 |
YUANJ W,ZHANGG,LIUW B,et al.Off-grid sparse DOA estimation based iterative reweighted linear interpolation in spatial coloured noise[J].Electronics Letters,2020,56(11):573-575.
doi: 10.1049/el.2020.0381
|
30 |
QINY H,LIUY M,LIUJ Y,et al.Underdetermined wideband DOA estimation for off-grid sources with coprime array using sparse Bayesian learning[J].Sensors,2018,18(1):253.
doi: 10.3390/s18010253
|