1 |
GAO Y , YAO Z , LU M Q . High-precision unambiguous tracking technique for BDS B1 wideband composite signal[J]. Navigation, 2020, 67 (3): 633- 650.
doi: 10.1002/navi.377
|
2 |
WANG K D , ZHANG S X , WANG J L . Feasibility of using an S-band GNSS carrier by comparing with L and C bands[J]. Advances in Space Research, 2020, 66 (9): 2232- 2244.
doi: 10.1016/j.asr.2020.07.029
|
3 |
王瑛, 蒙艳松, 陶晓霞, 等. CN频段卫星导航研究[C]//第七届中国卫星导航学术年会论文集—S03卫星导航信号, 2016: 109-117.
|
|
WANG Y, MENG Y S, TAO X X, et al. Study on CN band satellite navigation[C]//Proc. of the 7th China Satellite Navigation Academic Conference—S03 Satellite Navigation Signal, 2016: 109-117.
|
4 |
International Telecommunication Union. Radio regulations[R]. Geneva: International Telecommunication Union, 2001.
|
5 |
IRSIGLER M , HEIN G W , SCHMITZ-PEIFFER A . Use of C-band frequencies for satellite navigation: benefits and drawbacks[J]. GPS Solutions, 2004, 8 (3): 119- 139.
doi: 10.1007/s10291-004-0098-2
|
6 |
COLZI E, SAMSON J, MRISCI M, et al. Assessment of the feasibility of GNSS in C-band[C]//Proc. of the International Communications Satellite Systems Conference, 2008.
|
7 |
朱亮, 陆明泉, 冯振明. 北斗系统C频段导航信号的波形设计[J]. 电子技术应用, 2012, 38 (8): 89- 92.
doi: 10.16157/j.issn.0258-7998.2012.08.029
|
|
ZHU L , LU M Q , FENG Z M . Waveform design for BeiDou C band navigation signal[J]. Measurement Control Technology and Instruments, 2012, 38 (8): 89- 92.
doi: 10.16157/j.issn.0258-7998.2012.08.029
|
8 |
IRSIGLER M, HEIN G W, EISSFELLER B, et al. Aspects of C-band satellite navigation: signal propagation and satellite signal tracking[C]//Proc. of the European Navigation Conference, 2002: 17-30.
|
9 |
AVILA-RODRIGUEZ J A, WALLNER S, WON J H, et al. Study on a Galileo signal and service plan for C-band[C]//Proc. of the International Technical Meeting of the Satellite Division of the Institute of Navigation, 2008: 2515-2529.
|
10 |
SCHMITZ-PEIFFER A, STOPFKUCHEN L, FLOCH J, et al. Assessment on the use of C-band for GNSS within the European GNSS evolution programme[C]//Proc. of the ION GNSS, 2008.
|
11 |
SCHMITZ-PEIFFER A , STOPFKUCHEN L , FLOCH J , et al. Architecture for a future C-band/L-band GNSS mission-part1: C-band services, space and ground segment, overall performance[J]. Inside GNSS, 2009, 4 (3): 47- 56.
|
12 |
RODRIGUE J A , SCHMITZPEIFFER A , WON J H , et al. Architecture for a future C-band/L-band GNSS mission-part2: signal considerations and related user terminal aspects[J]. Inside GNSS, 2009, 4 (4): 52- 64.
|
13 |
LIU M H , ZHAN X Q , LI W , et al. An improved MSK-BCS modulation for global navigation satellite systems in C band[J]. IEEE Trans.on Electrical and Electronic Engineering, 2016, 11 (4): 474- 479.
doi: 10.1002/tee.22264
|
14 |
孙岩博. 基于连续相位调制的多波段导航信号模型研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
|
SUN Y B. Research on multiband navigation signal model based on continuous phase modulation[D]. Harbin: Harbin Engineering University, 2018.
|
15 |
XIA X , TANG Z P , WEI J L . Spectrally efficient constant envelope modulation for GNSS signals[J]. Radioengineering, 2018, 27 (3): 813- 818.
doi: 10.13164/re.2018.0813
|
16 |
杨大伟, 王红星, 刘传辉, 等. 基于零阶椭圆球面波信号的连续相位调制及性能分析[J]. 系统工程与电子技术, 2021, 43 (8): 2311- 2320.
|
|
YANG D W , WANG H X , LIU C H , et al. Continuous phase modulation based on zero order PSWF signal and its perfor-mance analysis[J]. Systems Engineering and Electronics, 2021, 43 (8): 2311- 2320.
|
17 |
杨大伟, 刘传辉, 康家方, 等. 优化参数对CPM-PSWF信号性能的影响[J]. 电讯技术, 2021, 61 (1): 42- 49.
|
|
YANG D W , LIU C H , KANG J F , et al. Influence of optimizing parameters on performance of CPM modulation signal based on PSWF[J]. Telecommunication Engineering, 2021, 61 (1): 42- 49.
|
18 |
YANG D W, LIU C H, KANG J F. CPM-PSWFs signal demodulation method based on waveform coherence[C]//Proc. of the IEEE 20th International Conference on Communication Technology, 2020: 1237-1241.
|
19 |
International Telecommunication Union. Resolution 603(WRC-2000): studies on compatibility between stations of the radio navigation-satellite service (Earth-to-space) operating in the frequency band 5 000~5 010 MHz and the international standard system (microwave landing system) operating in the band 5 030~5 150 MHz[R]. Geneva: International Telecommunication Union, 2000.
|
20 |
LIU M H , ZHAN X Q , LI W , et al. A compatibility analysis between GNSS and radio astronomy/microwave landing system in C band[J]. Journal of Aeronautics Astronautics & Aviation, 2014, 46 (2): 102- 107.
|
21 |
Radio Communication Study Groups. Potential interference between the ICAO standard microwave landing system (MLS) operating above 5 030 MHz and radio navigation-satellite service (RNSS) systems in the band 5 000~5 030 MHz[R]. Geneva: Electronic Publication, 2012: 1-31.
|
22 |
UIT-R M. 1583-1. Radio regulations-interference calculations between non-geostationary mobile-satellite service or radio navigation- satellite service systems and radio astronomy telescope sites[S]. Geneva: International Telecommunication Union, 2007.
|
23 |
UIT-R RA. 1631. Radio regulations-reference radio astronomy antenna pattern to be used for compatibility analyses between non-gso systems and radio astronomy service stations based on the epfd concept[S]. Geneva: International Telecommunication Union, 2003.
|
24 |
International Telecommunication Union. Protection of the radio astronomy service in the band 4 990~5 000 MHz from unwanted emissions of the radio navigation-satellite service(space-to-Earth) operating in the frequency band 5010~5030 MHz: resolution 741(WRC-03)[R]. Geneva: International Telecommunication Union, 2003.
|
25 |
SUN Y B . Optimal parameter design of continuous phase modulation for future GNSS signals[J]. IEEE Access, 2021, 9, 58487- 58502.
doi: 10.1109/ACCESS.2021.3073317
|
26 |
CAO Q M, SUN H R, YUAN X Y, et al. Analysis of the spectrum and the demodulation of narrowband continuous phase modulation[C]//Proc. of the International Conference on Wireless Communications and Smart Grid, 2021: 43-48.
|
27 |
WU H W, PENG Q H, WANG J Y, et al. A novel demodulation network for binary partial response CPM Signals[C]//Proc. of the IEEE 3rd International Conference on Information Communication and Signal Processing, 2020: 33-37.
|
28 |
PROAKIS J G, SALEHI M. 数字通信[M]. 5版. 张力军, 张宗橙, 宋荣方等译. 北京: 电子工业出版社, 2017: 83-90.
|
|
PROAKIS J G, SALEHI M. Digital communications[M]. 5th ed. ZHANG L J, ZHANG Z C, SONG R F, et al trans. Beijing: Publishing House of Electronics Industry, 2017: 83-90.
|
29 |
WANG H X , LU F P , LIU C H , et al. Strict parity symmetric prolate spheroidal wave functions signal construction and low complexity detection method[J]. Scientia Sinica Informationis, 2020, 50 (5): 766- 776.
doi: 10.1360/SSI-2019-0121
|
30 |
LANDAU H J , POLLAK H O . Prolate spheroidal wave functions, Fourier analysis and uncertainty principle I and Ⅱ[J]. Bell System Technical Journal, 1961, 40 (1): 65- 84.
doi: 10.1002/j.1538-7305.1961.tb03977.x
|
31 |
舒根春, 王红星, 赵志勇, 等. 基于带通采样的椭圆球面波函数数值解法[J]. 电路与系统学报, 2011, 16 (5): 132- 136.
|
|
SHU G C , WANG H X , ZHAO Z Y , et al. Numerical solution of prolate spheroidal wave functions based on bandpass sampling[J]. Journal of Circuits and Systems, 2011, 16 (5): 132- 136.
|
32 |
唐祖平, 周鸿伟, 胡修林, 等. Compass导航信号性能评估研究[J]. 中国科学: 物理学力学天文学, 2010, 40 (5): 592- 602.
|
|
TANG Z P , ZHOU H W , HU X L , et al. Research on performance evaluation of COMPASS signal[J]. Scientia Sinica: Physica, Mechanica Astronomica, 2010, 40 (5): 592- 602.
|
33 |
XUE R , SUN Y B , ZAHO D F . CPM signal for satellite navigation in the S and C bands[J]. Sensors, 2015, 15 (6): 13184- 13200.
doi: 10.3390/s150613184
|
34 |
梁姗. 多GNSS环境下卫星导航信号体制研究与设计[D]. 成都: 电子科技大学, 2016.
|
|
LIANG S. Satellite navigation signal system research and design under the environment of multiple GNSS[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
|
35 |
XUE R , CAO Q M , WEI Q . A flexible modulation scheme design for C-band GNSS signals[J]. Mathematical Problems in Engineering, 2015,
doi: 10.1155.2015.165097
|
36 |
陆明泉, 姚铮, 张嘉怡, 等. 北斗卫星导航系统信号设计的进展及发展趋势[J]. 卫星应用, 2015, (12): 27- 31.
|
|
LU M Q , YAO Z , ZHANG J Y , et al. The progress and development trend of BDS signal design[J]. Satellite Application, 2015, (12): 27- 31.
|