1 |
AZAREWICZ J, FALA G, HEITHECKER C. Template-based multi-agent plan recognition for tactical situation assessment[C]// Proc. of the 5th Conference on Artificial Intelligence for Applications, 1989.
|
2 |
夏曦. 基于模板匹配的目标意图识别方法研究[D]. 长沙: 国防科学技术大学, 2006.
|
|
XIA X. The study of target intent assessment method based on the template-matching[D]. Changsha: School of National University of Defense Technology, 2006.
|
3 |
CHANG L L , ZHOU Z J , YOU Y , et al. Belief rule based expert system for classification problems with new rule activation and weight calculation procedures[J]. Information Sciences, 2016, 336 (1): 75- 91.
|
4 |
YIN X , ZHANG M , CHEN M Q . Combat intention recognition of the target in the air based on discri-minant analysis[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38 (3): 46- 50.
|
5 |
ZHOU T L , CHEN M , CHEN S , et al. Intention prediction of aerial target under incomplete information[J]. ICIC Express Letters An International Journal of Research and Surveys, 2017, 8, 623- 631.
|
6 |
戴革林, 陈伟, 刘志坚, 等. 基于区间灰关联度的飞机战术意图识别方法[J]. 数学的实践与认识, 2014, 44 (20): 198- 207.
|
|
DAI G L , CHEN W , LIU Z J , et al. Method of target tactical intention recognition based on interval grey relational degree[J]. Mathematics in Practice and Theory, 2014, 44 (20): 198- 207.
|
7 |
CHEN Z G , WU X F . A novel multi-timescales layered intention recognition method[J]. Applied Mechanics and Materials, 2014, 644-650, 4607- 4611.
doi: 10.4028/www.scientific.net/AMM.644-650.4607
|
8 |
XU Y H, CHENG S Y, ZHANG H B, et al. Air target combat intention identification based on IE-DSBN[C]//Proc. of the International Workshop on Electronic Communication and Artificial Intelligence, 2020: 36-40.
|
9 |
JIN Q, GOU X T, JIN W D, et al. Intention recognition of aerial targets based on Bayesian optimization algorithm[C]//Proc. of the IEEE International Conference on Intelligent Transportation Engineering, 2017: 356-359.
|
10 |
欧微, 柳少军, 贺筱媛, 等. 基于时序特征编码的目标战术意图识别算法[J]. 指挥控制与仿真, 2016, 38 (6): 36- 41.
doi: 10.3969/j.issn.1673-3819.2016.06.008
|
|
OU W , LIU S J , HE X Y , et al. Tactical intention recognition algorithm based on encoded temporal features[J]. Command Control & Simulation, 2016, 38 (6): 36- 41.
doi: 10.3969/j.issn.1673-3819.2016.06.008
|
11 |
周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39 (11): 200- 208.
|
|
ZHOU W W , YAO P Y , ZHANG J Y , et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (11): 200- 208.
|
12 |
陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38 (8): 1847- 1853.
|
|
CHEN H , REN Q L , HUA Y , et al. Fuzzy neural network based tactical intention recognition for sea targets[J]. Systems Engineering and Electronics, 2016, 38 (8): 1847- 1853.
|
13 |
XUE J J , ZHU J , XIAO J Y , et al. Panoramic convolutional long short-term memory networks for combat intension recognition of aerial targets[J]. IEEE Access, 2020, 8, 183312- 183323.
|
14 |
ZHANG T W , ZHANG X L , LIU C , et al. Balance learning for ship detection from synthetic aperture radar remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, 190- 207.
|
15 |
CHAWLA N V , BOWYER K W , HALL L O , et al. SMOTE: synthetic minority over-sampling technique[J]. The Journal of Artificial Intelligence Research, 2002, 16, 321- 357.
|
16 |
YEN S J , LEE Y S . Cluster-based under-sampling approaches for imbalanced data distributions[J]. Expert Systems with Applications, 2009, 36 (3): 5718- 5727.
|
17 |
RAMENTOL E , CABALLERO Y , BELLO R , et al. Smote-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory[J]. Knowledge and Information Systems, 2012, 33 (2): 245- 265.
|
18 |
LEE Z J , LEE C Y , CHOU S T , et al. A hybrid system for imbalanced data mining[J]. Microsystem Technologies, 2020, 26, 3043- 3047.
|
19 |
GYOTEN D , OHKUBO M , NAGATA Y . Imbalanced data classification procedure based on SMOTE[J]. Total Quality Science, 2020, 5 (2): 64- 71.
|
20 |
BATISTA G , PRATI R C , MONARD M C . A study of the behavior of several methods for balancing machine learning training data[J]. ACM Sigkdd Explorations Newsletter, 2004, 6 (1): 20- 29.
|
21 |
GARCIA S , LUENGO J , HERRERA F . Tutorial on practical tips of the most influential data preprocessing algorithms in data mining[J]. Knowledge-Based Systems, 2016, 98, 1- 29.
|
22 |
FERNANDEZ A , GARCIA S , CHAWLA N V , et al. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary[J]. Journal of Artificial Intelligence Research, 2018, 61, 863- 905.
|
23 |
HUSSEIN A S , LI T , CHUBATO W Y , et al. A-SMOTE: a new preprocessing approach for highly imbalanced datasets by improving SMOTE[J]. International Journal of Computational Intelligence Systems, 2019, 12 (2): 1412- 1422.
|
24 |
CHEN B Y , XIA S Y , CHEN Z Z , et al. RSMOTE: a self-adaptive robust SMOTE for imbalanced problems with label noise[J]. Information Sciences, 2021, 553, 397- 428.
|
25 |
CHEN J X , JIANG D M , ZHANG Y N . A hierarchical bidirectional GRU model with attention for EEG-based emotion classification[J]. IEEE Access, 2019, 7, 118530- 118540.
|
26 |
HUI H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//Proc. of the in Intelligent Computing, 2005: 878-887.
|
27 |
MUKHERJEE M , KHUSHI M . SMOTE-ENC: a novel SMOTE-based method to generate synthetic data for nominal and continuous features[J]. Applied System Innovation, 2021, 4 (1): 18.
|
28 |
ZHOU T L , CHEN M , WANG Y H , et al. Information entropy-based intention prediction of aerial targets under uncertain and incomplete information[J]. Entropy, 2020, 22 (3): 279.
|
29 |
刘钻东, 陈谋, 吴庆宪, 等. 非完备信息下无人机空战目标意图预测[J]. 中国科学: 信息科学, 2020, 50 (5): 704- 717.
|
|
LIU Z D , CHEN M , WU Q X , et al. Prediction of unmanned aerial vehicle target intention under incomplete information[J]. Scientia Sinica Informationis, 2020, 50 (5): 704- 717.
|
30 |
ZHAO X S, SHAO Y B, MAI J Y, et al. Respiratory sound classification based on BiGRU-Attention network with XGBoost[C]//Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, 2020: 915-920.
|