系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (12): 3728-3737.doi: 10.12305/j.issn.1001-506X.2022.12.17
邱禄芸*, 方志耕, 陶良彦, 陶秋澄
收稿日期:
2021-07-30
出版日期:
2022-11-14
发布日期:
2022-11-24
通讯作者:
邱禄芸
作者简介:
邱禄芸 (1996—), 女, 硕士研究生, 主要研究方向为体系效能评估|方志耕 (1962—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为质量与可靠性、博弈论、体系效能评估|陶良彦 (1988—), 男, 讲师, 博士, 主要研究方向为质量与可靠性、体系效能评估|陶秋澄 (1999—), 男, 本科, 主要研究方向为体系效能评估
基金资助:
Luyun QIU*, Zhigeng FANG, Liangyan TAO, Qiucheng TAO
Received:
2021-07-30
Online:
2022-11-14
Published:
2022-11-24
Contact:
Luyun QIU
摘要:
网络体系(system of system, SoS)的效能评估是SoS建设和分析的重点问题。传统功能依赖网络分析(functional dependency network analysis, FDNA)方法可以展示SoS“松散耦合”特性, 但缺乏对组件系统的运行独立性、效能衰减性、拓扑规律性等特征的关注。针对此, 在考虑多态问题的基础上, 通过Markov过程分析, 推导组件系统的自主效能衰减函数与系数, 改进了传统方法中的固定参数, 求得节点的动态效能值。在界定“相关SoS”概念的基础上, 计算组件系统可靠度的重要度, 识别关键节点, 构建网络SoS效能评估函数。以五节点航天SoS为例, 演示评估过程并验证了方法的可行性。
中图分类号:
邱禄芸, 方志耕, 陶良彦, 陶秋澄. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44(12): 3728-3737.
Luyun QIU, Zhigeng FANG, Liangyan TAO, Qiucheng TAO. Effectiveness evaluation of network SoS based on improved FDNA model[J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737.
表1
传统FDNA模型针对体系效能评估问题的优缺点"
序号 | 优点 | 缺点 | 改进方向 |
1 | 可分析组件系统或系统间链路的性能水平降级对于体系的连锁影响, 考虑了节点之间的依赖关系。 | 忽视了组件系统的独立运行、独立管理特性, 忽视了组件系统自主效能具有随机性、退化性等特征。 | 划分各组件系统的状态, 研究多态及稳态等问题, 求得自主效能衰减函数。 |
2 | 用节点的性能水平表示节点的效能值, 在0到100 utils (utils为效能单位)之间的固定参数, 易懂, 可操作性强。 | 效能结果单一性假设。未考虑时间的因素, 忽视了效能的动态性等特征。 | 引入时间变量, 在时间范围内考虑效能的变化。 |
3 | 可以求得组件系统的效能数值。 | 未考虑体系层面效能评估问题, 忽视了不同节点的重要度。 | 识别组件系统的关键性, 考虑不等权重问题。 |
表2
4种方法的对比"
参数设置 | 方法名称 | |||
Garvey法 | Guariniello法 | 张旺勋法 | 本文方法 | |
计算公式 | SODOij=αijOi+ 100(1-αij) | SODOij=αijOi+ SEj(1-αij) | SODOij=[αijOi+ 100(1-αij)]SEj% | |
Oi=100 SEj=100 | Oj=100 | Oj=100 | Oj=100 | Oj(0)=100, Oj(5)=94.97, Oj(10)=89.91 |
Oi=100 SEj=50 | Oj=100 | Oj=95 | Oj=50 | Oj(0)=95, Oj(5)=85.45, Oj(10)=75.83 |
Oi=100 SEj=0 | Oj=100 | Oj=90 | Oj=0 | Oj(0)=0, Oj(5)=0, Oj(10)=0 |
Oi=50 SEj=100 | Oj=55 | Oj=55 | Oj=55 | Oj(0)=55, Oj(5)=52.23, Oj(10)=49.45 |
Oi=0 SEj=100 | Oj=10 | Oj=10 | Oj=10 | Oj(0)=10, Oj(5)=9.48, Oj(10)=8.99 |
Oi=60 SEj=30 | Oj=64 | Oj=57 | Oj=19.2 | Oj(0)=57, Oj(5)=47.45, Oj(10)=37.83 |
1 |
ACKOFF R L . Towards a system of systems concepts[J]. Management science, 1971, 17 (11): 661- 671.
doi: 10.1287/mnsc.17.11.661 |
2 | EISNER H, MCMILLAN R, MARCINIAK J, et al. RCASSE: rapid computer-aided system of systems (S2) engineering[C]//Proc. of the INCOSE International Symposium, 1993, 3(1): 267-273. |
3 | MAIER M W . Architecting principles for systems-of-systems[J]. Systems Engineering: The Journal of the International Council on Systems Engineering, 1998, 1 (4): 267- 284. |
4 |
SUN L F , CHANG J S , ZHANG J J , et al. Evaluation of unmanned aerial vehicles cooperative combat effectiveness based on conditional entropy combination weight method[J]. Journal of Aerospace Technology and Management, 2021, 13, e3621.
doi: 10.1590/jatm.v13.1227 |
5 | SUN Y , FANG Z . Research on projection gray target model based on FANP-QFD for weapon system of systems capability evaluation[J]. IEEE Systems Journal, 2020, 15 (3): 4126- 4136. |
6 | BOUZIAT T. A cooperative architecting procedure for systems of systems based on self-adaptive multi-agent systems[D]. Toulouse: Paul Sabatier University, 2017. |
7 |
张东, 于洪敏, 牛刚, 等. 基于仿真的技术保障装备体系效能评估方法[J]. 火力与指挥控制, 2021, 46 (9): 78- 82.78-82, 87
doi: 10.3969/j.issn.1002-0640.2021.09.014 |
ZHANG D , YU H M , NIU G , et al. Efficiency evaluation method of technical support equipment system based on simulation[J]. Fire Control & Command Control, 2021, 46 (9): 78- 82.78-82, 87
doi: 10.3969/j.issn.1002-0640.2021.09.014 |
|
8 |
魏东涛, 刘晓东, 李鹏, 等. 基于节点重要度与改进信息熵的装备体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43 (12): 3614- 3623.
doi: 10.12305/j.issn.1001-506X.2021.12.24 |
WEI D T , LIU X D , LI P , et al. Research on effectiveness evaluation method of equipment system based on node importance and improved information entropy[J]. Systems Engineering and Electronics, 2021, 43 (12): 3614- 3623.
doi: 10.12305/j.issn.1001-506X.2021.12.24 |
|
9 | 何榕, 王大旌, 崔帅豪. 基于复杂网络理论的网络化作战体系结构效能评估[J]. 兵工自动化, 2021, 40 (1): 43- 49. |
HE R , WANG D J , CUI S H . Structure effectiveness evaluation of network combat system based on complex network theory[J]. Ordnance Industry Automation, 2021, 40 (1): 43- 49. | |
10 | GARVEY P R, PINTO C A. Introduction to functional dependency network analysis[C]//Proc. of the 2nd International Symposium on Engineering Systems, 2009. |
11 | PINTO A C, GARVEY P R, KEATING C B, et al. FDNA approach to risk-informed conceptualization and design of system dependencies[C]//Proc. of the 30th Annual National Conference of the American Society for Engineering Management, 2009: 431-438. |
12 | REBELLO S , YU H , MA L . An integrated approach for system functional reliability assessment using dynamic Bayesian Network and hidden Markov model[J]. Reliability Engineering & System Safety, 2018, 180, 124- 135. |
13 |
CAI B P , ZHANG Y P , YUAN X B , et al. A dynamic-Bayesian- networks-based resilience assessment approach of structure systems: subsea oil and gas pipelines as a case study[J]. China Ocean Engineering, 2020, 34 (5): 597- 607.
doi: 10.1007/s13344-020-0054-0 |
14 |
GUARINIELLO C , DELAURENTIS D . Dependency analysis of system-of-systems operational and development networks[J]. Procedia Computer Science, 2013, 16, 265- 274.
doi: 10.1016/j.procs.2013.01.028 |
15 |
GUARINIELLO C , DELAURENTIS D . Communications, information, and cyber security in systems-of-systems: assessing the impact of attacks through interdependency analysis[J]. Procedia Computer Science, 2014, 28, 720- 727.
doi: 10.1016/j.procs.2014.03.086 |
16 |
GUARINIELLO C , DELAURENTIS D . Supporting design via the system operational dependency analysis methodology[J]. Research in Engineering Design, 2017, 28 (1): 53- 69.
doi: 10.1007/s00163-016-0229-0 |
17 | GUARINIELLO C, MARSH T B, PORTER R, et al. Artificial intelligence agents to support data mining for sos modeling of space systems design[C]//Proc. of the IEEE Aerospace Conference, 2020. |
18 | COSTA A , MCSHANE M , PINTO A . Investigating interbank contagion with agent-based modeling and functional dependency network analysis (FDNA)[J]. Available at SSRN 2608937, 2015, |
19 | ROMAN A , PINTO C A . Systemic analysis of the use of artificial intelligence (AI) in regulating terrorist content on social media ecosystem using functional dependency network analysis (FDNA)[J]. OUR Journal: ODU Undergraduate Research Journal, 2020, 7 (1): 7. |
20 |
SERVI L D , GARVEY P R . Deriving global criticality conditions from local dependencies using functional dependency network analysis (FDNA)[J]. Systems Engineering, 2017, 20 (4): 297- 306.
doi: 10.1002/sys.21394 |
21 | OZDEMIR H I, PINTO C A, UNAL R, et al. Supporting technology selection via portfolio readiness level and technology forecasting[C]//Proc. of the International Annual Conference of the American Society for Engineering Management, 2019. |
22 | ZHANG W X , WANG Y , LI Q . An improved functional dependency network model for SoS operability analysis[J]. Applied Mechanics & Materials, 2014, 602-605, 3355- 335. |
23 | 张旺勋. 基于复杂交互网络的武器装备体系安全性分析方法[D]. 长沙: 国防科学技术大学, 2015. |
ZHANG W X. A weapon system of systems safety analysis method based on complex interactive network[D]. Changsha: University of Defense Technology, 2015. | |
24 | 张旺勋, 李群, 侯洪涛, 等. 卫星导航系统的体系安全性分析方法[J]. 国防科技大学学报, 2015, 37 (2): 92- 98. |
ZHANG W X , LI Q , HOU H T , et al. System of systems safety analysis method for GNSS[J]. Journal of National University of Defense Science and technology, 2015, 37 (2): 92- 98. | |
25 | 陈宇奇, 徐廷学, 郝建平, 等. 基于FDN的装备体系任务能力依赖性分析[J]. 系统工程与电子技术, 2021, 43 (6): 1721- 1728. |
CHEN Y Q , XU T X , HAO J P , et al. Task capability dependency analysis of weapon system of systems based on FDN[J]. Systems Engineering and Electronics, 2021, 43 (6): 1721- 1728. | |
26 | 孙丽杰, 王剑波, 罗云峰, 等. 体系功能依赖网络参数获取及应用[J]. 兵工自动化, 2018, 37 (1): 40- 44.40-44, 54 |
SUN L J , WANG J B , LUO Y F , et al. Acquisition and application of function dependent network parameters for system of systems[J]. Ordnance automation, 2018, 37 (1): 40- 44.40-44, 54 | |
27 | 陈跃, 李元元, 秦肖臻, 等. 基于FDNA的体系效能波及分析[J]. 火力与指挥控制, 2017, 42 (10): 14- 18.14-18, 24 |
CHEN Y , LI Y Y , QIN X Z , et al. Ripple effect analysis for system of system using FDNA[J]. Firepower and Command and Control, 2017, 42 (10): 14- 18.14-18, 24 | |
28 | GOROD A , SAUSER B , BOARDMAN J . System-of-systems engineering management: a review of modern history and a path forward[J]. IEEE Systems Journal, 2008, 2 (4): 484- 499. |
29 | ABDOLI S , KARA S , HAUSCHILD M . System interaction, system of systems, and environmental impact of products[J]. CIRP annals, 2019, 68 (1): 17- 20. |
30 | 陈志伟, 王靖, 谷长超, 等. 考虑动态重构的装备体系可用性及弹性分析[J]. 系统工程与电子技术, 2021, 43 (8): 2347- 2354. |
CHEN Z W , WANG J , GU C C , et al. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration[J]. System Engineering and Electronics, 2021, 43 (8): 2347- 2354. | |
31 | RYDER C , FLANIGAN D . Applying the systems engineering method to the joint capabilities integration and development system (JCIDS)[M]. Arlington, Virginia: Infotech @ Aerospace, 2005: 7074. |
32 | HAIMES Y Y . Risk modeling of interdependent complex systems of systems: theory and practice[J]. Risk Analysis, 2018, 38 (1): 84- 98. |
33 | RAMAN R , D'SOUZA M . Decision learning framework for architecture design decisions of complex systems and system-of-systems[J]. Systems Engineering, 2019, 22 (6): 538- 560. |
34 | ZHOU J , HUANG N , COIT D W , et al. Combined effects of load dynamics and dependence clusters on cascading failures in network systems[J]. Reliability Engineering & System Safety, 2018, 170, 116- 126. |
[1] | 浣顺启, 方哲梅, 王剑波. 基于功能依赖网的体系效能评估方法[J]. 系统工程与电子技术, 2022, 44(7): 2191-2200. |
[2] | 蔺向阳, 邢清华, 刘付显. 针对要点防空模型的作战兵力优化研究[J]. 系统工程与电子技术, 2022, 44(3): 921-928. |
[3] | 陈宇奇, 徐廷学, 郝建平, 逯程, 李志强. 基于FDN的装备体系任务能力依赖性分析[J]. 系统工程与电子技术, 2021, 43(6): 1721-1728. |
[4] | 潘星, 张振宇, 张艳梅, 王冉冉. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43(2): 390-398. |
[5] | 高昂, 郭齐胜, 董志明, 杨绍卿. 基于EAS+MADRL的多无人车体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3643-3651. |
[6] | 杨圩生, 王钰, 杨洋, 唐亮. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
[7] | 韩驰, 熊伟. 基于改进灰狼算法优化SVR的航天侦察装备效能评估[J]. 系统工程与电子技术, 2021, 43(10): 2902-2910. |
[8] | 李彪, 王立文, 邢志伟, 罗谦. 过站航班地面保障流程效能评估[J]. 系统工程与电子技术, 2020, 42(7): 1543-1549. |
[9] | 汪民乐. 导弹力量作战行动规划综述[J]. 系统工程与电子技术, 2020, 42(12): 2825-2832. |
[10] | 方志耕, 邵瑞瑞, 王召, 刘思峰, 游伟青, 高素. 高轨卫星通信星座PS-GERT效能评估模型[J]. 系统工程与电子技术, 2020, 42(10): 2356-2365. |
[11] | 王双川, 贾希胜, 胡起伟, 王强. 基于正态灰云模型的装备维修保障系统效能评估[J]. 系统工程与电子技术, 2019, 41(7): 1576-1582. |
[12] | 张壮, 李琳琳, 魏振华, 余宏峰. 基于变权投影灰靶的指控系统动态效能评估[J]. 系统工程与电子技术, 2019, 41(4): 801-809. |
[13] | 冯蕴雯, 刘奎剑, 薛小锋, 刘雨昌. 基于Markov过程的冗余系统备件与冗余度联合优化[J]. 系统工程与电子技术, 2019, 41(4): 919-928. |
[14] | 王双川, 胡起伟, 李锋, 王强, 冉悄然, 马云飞. 装备维修保障效能评估研究综述[J]. 系统工程与电子技术, 2019, 41(10): 2271-2278. |
[15] | 罗承昆, 陈云翔, 王莉莉, 王泽洲, 常政. 基于作战环和改进信息熵的体系效能评估方法[J]. 系统工程与电子技术, 2019, 41(1): 73-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||