1 |
ROBEY F C , FUHRMANN D R , KELLY E J , et al. A CFAR adaptive matched filter detector[J]. IEEE Trans.on Aerospace & Electronic Systems, 1992, 28 (1): 208- 216.
|
2 |
LIM H , CHAE D , YOO J H , et al. Template matching-based target recognition algorithm development and verification using SAR images[J]. Journal of the Korea Institute of Military Science and Technology, 2014, 17 (3): 364- 377.
doi: 10.9766/KIMST.2014.17.3.364
|
3 |
GROSSO E, GUIDA R. A new automatic ship wake detection for Sentinel-1 imagery[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 1259-1262.
|
4 |
何耀民, 何华锋, 徐永壮, 等. 基于改进小波变换的海上目标检测[J]. 系统工程与电子技术, 2020, 42 (1): 83- 89.
|
|
HE Y M , HE H F , XU Y Z , et al. Marine target detection based on improved wavelet transform[J]. Systems Engineering and Electronics, 2020, 42 (1): 83- 89.
|
5 |
魏松杰, 张泽栋, 徐臻, 等. 基于多尺寸特征叠加的SAR舰船目标检测方法[J]. 湖南大学学报(自然科学版), 2021, 48 (4): 80- 89.
|
|
WEI S J , ZHANG Z D , XU Z , et al. Method of vessel target detection in SAR images based on multi-scale feature superposition[J]. Journal of Hunan University (Natural Sciences), 2021, 48 (4): 80- 89.
|
6 |
YANG M, SHI X B. A deep learning model S-Darknet suitable for small target detection[C]//Proc. of the 6th International Symposium on Advances in Electrical, Electronics and Computer Engineering, 2021.
|
7 |
ZHANG R H, XU M, SHI Y X, et al. Infrared target detection using intensity saliency and self-attention[C]//Proc. of the IEEE International Conference on Image Processing, 2020: 1991-1995.
|
8 |
GIRSHICK R, DONAHUE J, DARRELl T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
9 |
HE K M , ZHANG X Y , REN S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
10 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
11 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
12 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
13 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
14 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the Computer Vision and Pattern Recognition, 2017: 6517-6525.
|
15 |
REDMON J, FARHADI A. YOLOv3: an incre-mental improvement[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1804.02767.
|
16 |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2020-04-23]. https://arx-iv.org/abs/2004.10934.
|
17 |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 770- 778.
|
18 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
19 |
XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995.
|
20 |
NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//Proc. of the European Conference on Computer Vision, 2016: 483-499.
|
21 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2017-04-17]. https://arxiv.org/abs/1704.04861.
|
22 |
TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proc. of the International Conference on Machine Learning, 2019: 6105-6114.
|
23 |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 5686-5696.
|
24 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
25 |
GHIASI G, LIN T, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 7029-7038.
|
26 |
PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 821-830.
|
27 |
LAW H , DENG J . CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128 (3): 642- 656.
doi: 10.1007/s11263-019-01204-1
|
28 |
ZHOU X Y, ZHUO J C, KRÄHENBVHL P. Bottom-up object detection by grouping extreme and center points[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 850-859.
|
29 |
ZHOU X Y, WANG D Q, KRÄHENBVHL P. Objects as points[EB/OL]. [2019-04-16]. http://arxiv.org/abs/1904.07850.
|
30 |
ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 840-849.
|
31 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2019, 27: 9626-9635.
|
32 |
KONG T , SUN F C , LIU H P , et al. FoveaBox: beyound anchor-based object detection[J]. IEEE Trans.on Image Processing, 2020, 29, 7389- 7398.
doi: 10.1109/TIP.2020.3002345
|
33 |
CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proc. of the International Conference on Computer Vision Workshop, 2019: 1971-1980.
|
34 |
LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proc. of the European Conference on Computer Vision, 2018: 404-419.
|
35 |
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognitiion, 2018: 7794-7803.
|
36 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 42 (8): 2011- 2023.
|
37 |
LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the IEEE SAR in Big Data Era: Models, Methods and Applications, 2017.
|
38 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|