1 |
KRIZHEVSKYA , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
2 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
3 |
GIRSHICKR. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
4 |
RENS Q , HE K M , GIRSHICK R , et al. FasterR-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
5 |
LAW H , DENG J . CornerNet: detecting objectsas paired keypoints[J]. International Journal of Computer Vision, 2020, 128 (3): 642- 656.
doi: 10.1007/s11263-019-01204-1
|
6 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578.
|
7 |
ZHOU X Y, ZHUO J C, KRHENBVHL P. Bottom-up object detection by grouping extremeand center points[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 850-859.
|
8 |
陈冬, 句彦伟. 基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943.
|
|
CHEN D , JU Y W . Ship detection in SAR imagebased on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943.
|
9 |
LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904.
|
10 |
JIANG Y Y, ZHU X Y, WANG X B, et al. R2CNN: rotational region CNN for orientation robust scene text detection[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1706.09579v2.
|
11 |
MA J Q , SHAO W Y , YE H , et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans.on Multimedia, 2018, 20 (11): 3111- 3122.
doi: 10.1109/TMM.2018.2818020
|
12 |
DING J, XUE N, LONG Y, et al. Learning RoI transformer for detecting oriented objects in aerial images[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1812.00155.
|
13 |
LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5909-5918.
|
14 |
WEI H Y , ZHANG Y , CHANG Z H , et al. Orientedobjects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 268- 279.
doi: 10.1016/j.isprsjprs.2020.09.022
|
15 |
ZHOU L , WEI H R , LI H , et al. Objects detection for remotesensing images based on polar coordinates[J]. IEEE Access, 2020, 8, 223373- 223384.
doi: 10.1109/ACCESS.2020.3041025
|
16 |
ZHU Z C , DIAO W H , CHEN K Q , et al. Diamondnet: ship detection in remote sensing images by extractingand clustering keypoints in a diamond[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2020, 5 (2): 625- 632.
|
17 |
ZHANG F, WANG X Y, ZHOU S L, et al. Arbitrary-oriented ship detection through center-headpoint extraction[EB/OL]. [2021-07-10]. https://arxiv.org/abs/2101.11189v2.
|
18 |
YI J R, WU P X, LIU B, et al. Oriented object detectionin aerial images with boxboundary-aware vectors[C]//Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 2150-2159.
|
19 |
YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, clutteredand rotated objects[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 8232-8241.
|
20 |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
21 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018.
|
22 |
LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proc. of the International Conference on Pattern Recognition Applications and Methods, 2017: 324-331.
|
23 |
仲伟峰, 郭峰, 向世明, 等. 旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019, 31 (11): 1935- 1945.
|
|
ZHONG W F , GUO F , XIANG S M , et al. Ship detectionin remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & ComputerGraphics, 2019, 31 (11): 1935- 1945.
|
24 |
LIU Z K, HU J G, WENG L B, et al. Rotatedregion based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904.
|
25 |
LIN Y T, FENG P M, GUAN J, et al. IENet: interacting embranchment one stage anchor free detector for orientation aerial object detection[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1912.00969.
|
26 |
ZHANG Z H , GUO W W , ZHU S N , et al. Toward arbitrary-oriented ship detection withrotated region proposal and discri-minationnetworks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1745- 1749.
doi: 10.1109/LGRS.2018.2856921
|
27 |
LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5909-5918.
|
28 |
DING J, XUE N, LONG Y, et al. Learning ROI transformer for oriented object detection in aerial images[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2849-2858.
|
29 |
PAN X J, REN Y Q, SHENG K K, et al. Dynamic refinement network for oriented and denselypacked object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11207-11216.
|