| 1 | KRIZHEVSKYA ,  SUTSKEVER I ,  HINTON G E .  Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90. doi: 10.1145/3065386
 | 
																													
																						| 2 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. | 
																													
																						| 3 | GIRSHICKR. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448. | 
																													
																						| 4 | RENS Q ,  HE K M ,  GIRSHICK R , et al.  FasterR-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149. | 
																													
																						| 5 | LAW H ,  DENG J .  CornerNet: detecting objectsas paired keypoints[J]. International Journal of Computer Vision, 2020, 128 (3): 642- 656. doi: 10.1007/s11263-019-01204-1
 | 
																													
																						| 6 | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578. | 
																													
																						| 7 | ZHOU X Y, ZHUO J C, KRHENBVHL P. Bottom-up object detection by grouping extremeand center points[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 850-859. | 
																													
																						| 8 | 陈冬, 句彦伟.  基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943. | 
																													
																						|  | CHEN D ,  JU Y W .  Ship detection in SAR imagebased on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943. | 
																													
																						| 9 | LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904. | 
																													
																						| 10 | JIANG Y Y, ZHU X Y, WANG X B, et al. R2CNN: rotational region CNN for orientation robust scene text detection[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1706.09579v2. | 
																													
																						| 11 | MA J Q ,  SHAO W Y ,  YE H , et al.  Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans.on Multimedia, 2018, 20 (11): 3111- 3122. doi: 10.1109/TMM.2018.2818020
 | 
																													
																						| 12 | DING J, XUE N, LONG Y, et al. Learning RoI transformer for detecting oriented objects in aerial images[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1812.00155. | 
																													
																						| 13 | LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5909-5918. | 
																													
																						| 14 | WEI H Y ,  ZHANG Y ,  CHANG Z H , et al.  Orientedobjects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 268- 279. doi: 10.1016/j.isprsjprs.2020.09.022
 | 
																													
																						| 15 | ZHOU L ,  WEI H R ,  LI H , et al.  Objects detection for remotesensing images based on polar coordinates[J]. IEEE Access, 2020, 8, 223373- 223384. doi: 10.1109/ACCESS.2020.3041025
 | 
																													
																						| 16 | ZHU Z C ,  DIAO W H ,  CHEN K Q , et al.  Diamondnet: ship detection in remote sensing images by extractingand clustering keypoints in a diamond[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2020, 5 (2): 625- 632. | 
																													
																						| 17 | ZHANG F, WANG X Y, ZHOU S L, et al. Arbitrary-oriented ship detection through center-headpoint extraction[EB/OL]. [2021-07-10]. https://arxiv.org/abs/2101.11189v2. | 
																													
																						| 18 | YI J R, WU P X, LIU B, et al. Oriented object detectionin aerial images with boxboundary-aware vectors[C]//Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 2150-2159. | 
																													
																						| 19 | YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, clutteredand rotated objects[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 8232-8241. | 
																													
																						| 20 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. | 
																													
																						| 21 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018. | 
																													
																						| 22 | LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proc. of the International Conference on Pattern Recognition Applications and Methods, 2017: 324-331. | 
																													
																						| 23 | 仲伟峰, 郭峰, 向世明, 等.  旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019, 31 (11): 1935- 1945. | 
																													
																						|  | ZHONG W F ,  GUO F ,  XIANG S M , et al.  Ship detectionin remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & ComputerGraphics, 2019, 31 (11): 1935- 1945. | 
																													
																						| 24 | LIU Z K, HU J G, WENG L B, et al. Rotatedregion based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904. | 
																													
																						| 25 | LIN Y T, FENG P M, GUAN J, et al. IENet: interacting embranchment one stage anchor free detector for orientation aerial object detection[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1912.00969. | 
																													
																						| 26 | ZHANG Z H ,  GUO W W ,  ZHU S N , et al.  Toward arbitrary-oriented ship detection withrotated region proposal and discri-minationnetworks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1745- 1749. doi: 10.1109/LGRS.2018.2856921
 | 
																													
																						| 27 | LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5909-5918. | 
																													
																						| 28 | DING J, XUE N, LONG Y, et al. Learning ROI transformer for oriented object detection in aerial images[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2849-2858. | 
																													
																						| 29 | PAN X J, REN Y Q, SHENG K K, et al. Dynamic refinement network for oriented and denselypacked object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11207-11216. |