系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (12): 3621-3630.doi: 10.12305/j.issn.1001-506X.2022.12.05
裴家正1, 黄勇1,*, 陈宝欣2, 关键1, 陈小龙1
收稿日期:
2021-06-23
出版日期:
2022-11-14
发布日期:
2022-11-24
通讯作者:
黄勇
作者简介:
裴家正 (1994—), 男, 博士研究生, 主要研究方向为雷达多维信号处理|黄勇 (1979—), 男, 副教授, 博士, 主要研究方向为MIMO雷达目标检测算法|陈宝欣 (1990—), 男, 工程师, 博士, 主要研究方向为阵列信号处理、雷达多维信号处理|关键 (1968—), 男, 教授, 博士, 主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合|陈小龙 (1979—), 男, 副教授, 博士, 主要研究方向为雷达动目标检测、海杂波抑制、雷达信号精细化处理
基金资助:
Jiazheng PEI1, Yong HUANG1,*, Baoxin CHEN2, Jian GUAN1, Xiaolong CHEN1
Received:
2021-06-23
Online:
2022-11-14
Published:
2022-11-24
Contact:
Yong HUANG
摘要:
针对线性调频信号在距离单元内的回波采样点与目标点失配, 即采样失配的情况下, 自适应脉冲压缩性能下降的问题, 对快速自适应脉冲压缩(fast adaptive pulse compression, FAPC)方法进行改进, 提出一种基于线性约束最小方差(linearly constrained minimum variance, LCMV)原则的连续分块FAPC (contiguous block FAPC, CFAPC)方法。该方法将自适应波束形成方法类比到自适应脉冲压缩滤波方法中, 首先在最小方差无畸变响应(minimum variance distortionless response, MVDR)原则保持增益的前提下增加零点约束条件, 加宽零点凹口的宽度; 而后对分块的协方差矩阵设置置零条件, 抑制旁瓣能量, 实现在采样失配情况下保持稳健的目的。实验结果表明, 在脉内多普勒频移和采样失配同时存在的情况下, 所提方法可以更好地抑制目标的距离旁瓣, 具有较好的稳健性。
中图分类号:
裴家正, 黄勇, 陈宝欣, 关键, 陈小龙. 基于线性约束最小方差原则的稳健快速自适应脉冲压缩方法[J]. 系统工程与电子技术, 2022, 44(12): 3621-3630.
Jiazheng PEI, Yong HUANG, Baoxin CHEN, Jian GUAN, Xiaolong CHEN. Robust fast adaptive pulse compression method based on linearly constrained minimum variance principle[J]. Systems Engineering and Electronics, 2022, 44(12): 3621-3630.
1 | RICHARDS M A . Fundamentals of radar signal processing[M]. New York: The McGraw-Hill Companies, 2005: 230- 231. |
2 |
ZHANG W , SUN , MINN H . Algorithm and performance analysis for frame detection based on matched filtering[J]. IEEE Access, 2020, 8, 40559- 40572.
doi: 10.1109/ACCESS.2020.2975266 |
3 |
NARAYANAN R M , LIU A Z , RANGASWAMY M . An information elasticity framework for the adaptive matched filter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (6): 4916- 4929.
doi: 10.1109/TAES.2020.3009508 |
4 | ACKROYD M H , GHANI F . Optimum mismatched filters for sidelobe suppression[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 214- 218. |
5 |
TSAO J , STEINBERG B D . Reduction of sidelobe and speckle artifacts in microwave imaging the CLEAN technique[J]. IEEE Trans.on Antennas and Propagation, 1988, 36 (4): 543- 556.
doi: 10.1109/8.1144 |
6 |
RABASTE O , BOSSE J . Robust mismatched filter for off-grid target[J]. IEEE Signal Processing Letters, 2019, 26 (8): 1147- 1151.
doi: 10.1109/LSP.2019.2923054 |
7 |
ZHOU K , LI D X , SU Y , et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27, 1610- 1614.
doi: 10.1109/LSP.2020.3021667 |
8 | 潘孟冠, 胡金龙, 陈伯孝, 等. 基于CLEAN思想的互补码信号脉冲压缩算法[J]. 雷达科学与技术, 2020, 18 (3): 254- 261. |
PAN M G , HU J L , CHEN B X , et al. CLEAN concept based pulse compression algorithm for complementary code signal[J]. Radar Science and Technology, 2020, 18 (3): 254- 261. | |
9 |
BLUNT S D , GERLACH K . Adaptive pulse compression via MMSE estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (2): 572- 584.
doi: 10.1109/TAES.2006.1642573 |
10 |
BLUNT S D , GERLACH K . Multistatic adaptive pulse compression[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (3): 891- 903.
doi: 10.1109/TAES.2006.248196 |
11 |
GERLACH K , BLUNT S D . Radar pulse compression repair[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (3): 1188- 1195.
doi: 10.1109/TAES.2007.4383610 |
12 | BLUNT S D, SMITH K J, GERLACH K. Doppler-compensated adaptive pulse compression[C]//Proc. of the IEEE Conference on Radar, 2006. |
13 |
BLUNT S D , SHACKELFORD A K , GERLACH K . Doppler compensation & single pulse imaging using adaptive pulse compression[J]. IEEE Trans.on Aerospace and Electronic Systems, 2009, 45 (2): 647- 658.
doi: 10.1109/TAES.2009.5089547 |
14 | BLUNT S D, HIGGINS T. Achieving real-time efficiency for adaptive radar pulse compression[C]//Proc. of the IEEE Radar Conference, 2007: 116-121. |
15 | BLUNT S D , HIGGINS T . Dimensionality reduction techniques for efficient adaptive pulse compression[J]. IEEE Trans.on Aerospace & Electronic Systems, 2010, 46 (1): 349- 362. |
16 | HIGGINS T, BLUNT S D, GERLACH K. Gain-constrained adaptive pulse compression via an MVDR framework[C]//Proc. of the IEEE Radar Conference, 2009. |
17 |
GUAN J , HUANG Y , HE Y . A CFAR detector for MIMO array radar based on adaptive pulse compression-Capon filter[J]. Science China Information Sciences, 2011, 54, 2411- 2424.
doi: 10.1007/s11432-011-4329-1 |
18 | LI L, YI W, KONG L J, et al. Range limited adaptive pulse compression via linear Bayes estimation[C]//Proc. of the IEEE Radar Conference, 2014: 1010-1014. |
19 | BAI J L, QIN P, LI H, et al. An improved adaptive pulse compression algorithm based on linear frequency modulation signal[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
20 |
刘韵佛, 刘峥, 谢荣. 互相关干扰下的MIMO雷达自适应脉冲压缩方法[J]. 西安电子科技大学学报, 2011, 38 (4): 89- 94.
doi: 10.3969/j.issn.1001-2400.2011.04.016 |
LIU Y F , LIU Z , XIE R . Adaptive pulse compression for MIMO radar in cross correlation interference[J]. Journal of Xidian University, 2011, 38 (4): 89- 94.
doi: 10.3969/j.issn.1001-2400.2011.04.016 |
|
21 | 王伟, 马跃华, 郝燕玲. 基于MAPC-RISR的MIMO雷达距离——角度二维超分辨率成像算法[J]. 中国科学: 信息科学, 2015, 45 (3): 372- 384. |
WANG W , MA Y H , HAO Y L . High-resolution MIMO radar range-angle 2D imaging algorithm based on MAPC-RISR[J]. Scientia Sinica Informationis, 2015, 45 (3): 372- 384. | |
22 | HENKE D, MCCORMICK P, BLUNT S D, et al. Practical aspects of optimal mismatch filtering and adaptive pulse compression for FM waveforms[C]//Proc. of the IEEE Radar Conference, 2015: 1149-1155. |
23 | 李秀友, 董云龙, 黄勇, 等. 基于迭代线性约束最小方差的稳健自适应脉冲压缩方法[J]. 电子与信息学报, 2015, 37 (10): 2300- 2306. |
LI X Y , DONG Y L , HUANG Y , et al. Robust adaptive pulse compression algorithm based on reiterative linearly constrained minimum variance[J]. Journal of Electronics and Information Technology, 2015, 37 (10): 2300- 2306. | |
24 |
NING C , TIAN J , LI K , et al. Modified adaptive pulse compression algorithm for targets with range-straddling[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (5): 3057- 3070.
doi: 10.1109/TAES.2021.3068438 |
25 | CHEN B X, HUANG Y, CHEN X L, et al. Space-time-range adaptive processing for MIMO radar imaging[C]//Proc. of the International Conference on Radar, 2018. |
26 | MONZING R A , HAUPT R L , MILLER T W . Introduction to adaptive arrays[M]. New York: Wiley, 1980. |
27 |
NI G , SONG Y , CHEN J F , et al. Single-channel LCMV-based adaptive beamforming with time-modulated array[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (11): 1881- 1885.
doi: 10.1109/LAWP.2020.2997382 |
28 |
LIN J Q , CHAN S C . Recursive extended instrumental variable based LCMV beamformers for planar radial coprime arrays under spatially colored noise[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (1): 175- 189.
doi: 10.1109/TAES.2020.3011870 |
29 |
ZHANG J , KOUTROUVELIS A I , HEUSDENS R , et al. Distributed rate-constrained LCMV beamforming[J]. IEEE Signal Processing Letters, 2019, 26 (5): 675- 679.
doi: 10.1109/LSP.2019.2905161 |
30 | 郭翔宇, 鄢社锋, 王文侠. 基于迭代梯度方法的线性约束稳健Capon波束形成快速算法[J]. 信号处理, 2021, 37 (5): 712- 723. |
GUO X Y , YAN S F , WANG W X . A fast algorithm for linear constrained robust Capon beamforming based on iterative gradient method[J]. Journal of Signal Processing, 2021, 37 (5): 712- 723. | |
31 | 杨航. 快速稳健的自适应天线波束形成算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
YANG H. Studyon fast robust beamforming algorithms[D]. Harbin: Harbin Engineering University, 2019. | |
32 |
TIAN Z , BELL K L , VAN T H L . A recursive least squares implementation for LCMP beamforming under quadratic constraint[J]. IEEE Trans.on Signal Processing, 2001, 49 (6): 1138- 1145.
doi: 10.1109/78.923296 |
33 |
BLUNT S D . Polyphase-coded FM (PCFM) radar waveforms, part Ⅰ: implementation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (3): 2218- 2229.
doi: 10.1109/TAES.2014.130361 |
34 | DAKOTA H. Robust optimal and adaptive pulse compression for FM waveforms[D]. Appleton: Lawrence University of Kansas, 2015. |
35 | BLUNT S D. Embedding information into radar emissions via waveform implementation[C]//Proc. of the International Waveform Diversity and Design Conference, 2010: 195-199. |
[1] | 金艳, 赵大地, 姬红兵. 脉冲噪声下基于NAT函数的LFM信号参数估计[J]. 系统工程与电子技术, 2022, 44(3): 762-770. |
[2] | 孟晨, 王强, 王成, 李一宁. 基于Gabor框架的线性调频信号压缩采样与重构[J]. 系统工程与电子技术, 2021, 43(4): 883-893. |
[3] | 鲍雨婷, 曹菲, 张鹍鹏, 占必超, 李君宜, 占建伟. 基于OFDM-LFM的弹载广域SAR成像距离模糊抑制[J]. 系统工程与电子技术, 2021, 43(2): 369-375. |
[4] | 姜孟超, 廖桂生, 杨志伟, 王诏丰. 一种NLFM-CPM雷达通信一体化信号设计[J]. 系统工程与电子技术, 2019, 41(1): 35-42. |
[5] | 崔开博, 陈曦, 黄敬健, 袁乃昌. 基于均匀圆阵时频干涉仪的LFM信号二维测向算法[J]. 系统工程与电子技术, 2017, 39(8): 1669-1676. |
[6] | 金艳, 高舵, 姬红兵. α稳定分布噪声下基于稳健S变换的LFM信号参数估计[J]. 系统工程与电子技术, 2017, 39(4): 693-699. |
[7] | 张武才, 潘明海, 陈诗弘. 基于LFM子脉冲的宽带雷达目标回波模拟方法[J]. 系统工程与电子技术, 2017, 39(4): 768-774. |
[8] | 刘博宇, 李陟, 杨于杰, 李宏宇, 史建华. 基于LFM信号的分布式空间动平台定位技术[J]. 系统工程与电子技术, 2017, 39(3): 482-487. |
[9] | 夏阳, 宋志勇, 卢再奇, 付强. 多载频相位编码雷达信号自适应脉冲压缩方法[J]. 系统工程与电子技术, 2016, 38(9): 2028-2032. |
[10] | 李军1,2, 林秋华1, 杨秀庭2, 康春玉2. #br# 近场宽带LFM信号被动测向和测距方法[J]. 系统工程与电子技术, 2016, 38(8): 1737-1743. |
[11] | 金艳, 胡碧昕, 姬红兵. α稳定分布噪声下基于最优L-柯西加权的LFM信号参数估计[J]. 系统工程与电子技术, 2016, 38(7): 1488-1495. |
[12] | 张民, 刘海鹏, 蔡兆晖. 基于组合窗的OFDM-NLFM信号设计[J]. 系统工程与电子技术, 2016, 38(2): 287-292. |
[13] | 刘凯, 韩嘉宾, 王韵白, 黄青华. 基于切割聚类的快速多分量LFM信号分离[J]. 系统工程与电子技术, 2015, 37(5): 1004-1008. |
[14] | 黄庆东, 卢光跃, 庞胜利, 包志强. 改进的树型WSN分布式LCMV波束形成方法[J]. 系统工程与电子技术, 2014, 36(9): 1844-1848. |
[15] | 马秀荣,张媛,白媛,曹多. 基于功率谱形态学运算的LFM信号参数估计[J]. 系统工程与电子技术, 2014, 36(1): 16-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||