1 |
LEEK O H S . Detection of frequency-hopping signals with deep learning[J]. IEEE Communications Letters, 2020, 24 (5): 1042- 1046.
doi: 10.1109/LCOMM.2020.2971216
|
2 |
LEEK O H S . Detection of fast FH signals using dirty template in the frequency domain[J]. IEEE Wireless Communications Letters, 2019, 8 (1): 281- 284.
doi: 10.1109/LWC.2018.2870275
|
3 |
LI C X , QI P H , WANG D Y , et al. On the anti-interference tolerance of cognitive frequency hopping communication systems[J]. IEEE Trans.on Reliability, 2020, 69 (4): 1453- 1464.
doi: 10.1109/TR.2020.3002105
|
4 |
KWAK H , NO J , PARK H . Design of irregular SC-LDPC codes with non-uniform degree distributions by linear programming[J]. IEEE Trans.on Communications, 2019, 67 (4): 2632- 2646.
doi: 10.1109/TCOMM.2018.2889850
|
5 |
SADEGHI M R . Optimal search for Girth-8 quasi cyclic and spatially coupled multiple-edge LDPC codes[J]. IEEE Communications Letters, 2019, 23 (9): 1466- 1469.
doi: 10.1109/LCOMM.2019.2924892
|
6 |
房卫东, 张武雄, 胡明明, 等. 基于改进LDPC码的短距离跳频无线通信系统[J]. 通信学报, 2017, 38 (12): 34- 47.
doi: 10.11959/j.issn.1000-436x.2017284
|
|
FANG W D , ZHANG W X , HU M M , et al. Short-range frequency hopping wireless communication system based on improved LDPC codes[J]. Journal on Communications, 2017, 38 (12): 34- 47.
doi: 10.11959/j.issn.1000-436x.2017284
|
7 |
ERDOGAN E, ALDIRMAZ S, NAMDAR M, et al. Impact of partial band jammer in cognitive radio networks with interference alignment[C]//Proc. of the IEEE 27th Signal Processing and Communications Applications Conference, 2019.
|
8 |
LIU H Y, MU H K. Performance of FH QPSK receivers with partial-band interference[C]//Proc. of the IEEE International Conference on Computational Intelligence and Communication Networks, 2015: 649-651.
|
9 |
YANG K Z, ZHANG B N, WANG H X, et al. The perfor-mance analysis of LDPC coded SFH/BPSK anti-jamming system[C]//Proc. of the IEEE International Conference on Wireless Communication & Signal Processing, 2015.
|
10 |
LI Q , QU X R , YIN L G . Generalized low-density parity-check coding scheme with partial-band jamming[J]. Tsinghua Science and Technology, 2014, 19 (2): 203- 210.
doi: 10.1109/TST.2014.6787374
|
11 |
DAI J K , JING Y Q , YAO M L . Analysis of LDPC code in the FH system with partial-band interference[J]. The Institution of Engineering and Technology Communications, 2017, 11 (17): 2585- 2595.
|
12 |
雷菁, 王建辉, 唐朝京. 基于PEG算法的准循环扩展LDPC码构造[J]. 通信学报, 2008, 29 (9): 103- 110.
|
|
LEI J , WANG J H , TANG C J . Construction of quasi-cyclic extended LDPC codes based on PEG algorithm[J]. Journal of Communications, 2008, 29 (9): 103- 110.
|
13 |
PARK H , HONG S , NO J S , et al. Design of multiple-edge protographs for QC LDPC codes avoiding short inevitable cycles[J]. IEEE Trans.on Information Theory, 2013, 59 (7): 4598- 4614.
doi: 10.1109/TIT.2013.2250574
|
14 |
CHU T F, JIANG X Q, HOU J, et al. Construction of multiple-rate LDPC codes using modified PEG[C]//Proc. of the IEEE 9th International Conference on Wireless Communications and Signal Processing, 2017.
|
15 |
SHI X Y, ZHAO D F, TIAN H, et al. Design of time-inva-riant SC-LDPC codes based on PEG algorithm[C]//Proc. of the IEEE Computing, Communications and IoT Applications, 2020.
|
16 |
HE X , ZHOU L , DU J Y . A new multi-edge metric-constrained PEG algorithm for designing binary LDPC code with improved cycle-structure[J]. IEEE Trans.on Communications, 2018, 66 (1): 14- 25.
doi: 10.1109/TCOMM.2017.2753805
|
17 |
ZHENG D M , YUAN J G , WANG H S , et al. A new construction method of QC-LDPC codes with low error floor based on EETS and Zig-Zag[J]. Optoelectronics Letters, 2019, 15 (4): 292- 296.
doi: 10.1007/s11801-019-8199-x
|
18 |
袁建国, 郑德猛, 孙乐乐. 一种新颖的低错误平层LDPC码构造方法[J]. 电讯技术, 2018, 58 (6): 621- 624.
doi: 10.3969/j.issn.1001-893x.2018.06.001
|
|
YUAN J G , ZHENG D M , SUN L L . A novel low error flat layer LDPC code construction method[J]. Telecommunication Technology, 2018, 58 (6): 621- 624.
doi: 10.3969/j.issn.1001-893x.2018.06.001
|
19 |
QIN X , YANG C C , ZHENG Z Y , et al. Optimization of QC-LDPC codes by edge exchange method based on ACE[J]. IEEE Photonics Technology Letters, 2019, 31 (17): 1401- 1404.
doi: 10.1109/LPT.2019.2927029
|
20 |
WANG D D, GUO Y T, WANG Z H, et al. PEG based construction of irregular QC-LDPC codes by jointly optimizing the girth and the number and ACE of short cycles[C]//Proc. of the IEEE 18th International Conference on Optical Communications and Networks, 2019.
|
21 |
XIANG J S, WU Y M, LU X H, et al. Design of unequal error protection LDPC code in PPM and LDPC optical communication system[C]//Proc. of the IEEE International Conference on Artificial Intelligence and Computer Applications, 2019: 397-401.
|
22 |
WU C J , WANG H S , CHAO C C . UEP constructions of quasi-cyclic low-density parity-check codes via masking[J]. IEEE Trans.on Information Theory, 2017, 63 (10): 6271- 6294.
doi: 10.1109/TIT.2017.2740940
|
23 |
PAUDEL B, VAF S. An unequal error protection of QC-LDPC codes based on combinatorial designs[C]//Proc. of the IEEE 4th International Conference on Computer and Communication Systems, 2019: 488-492.
|
24 |
REN Y P, NI Z Y, KUANG L L, et al. Per-chip multi-user detection for SFH/BPSK systems[C]//Proc. of the IEEE 82nd Vehicular Technology Conference, 2015.
|
25 |
ZHANG J L , TEHK C , LI K H . Maximum-likelihood FFH/MFSK receiver over Rayleigh-fading channels with composite effects of MTJ and PBNJ[J]. IEEE Trans.on Communications, 2011, 59 (3): 675- 679.
doi: 10.1109/TCOMM.2011.121410.100016
|
26 |
HOU J L , SIEGEL P H , MILSTEIN L B . Performance analysis and code optimization of low-density parity-check codes on Rayleigh fading channels[J]. IEEE Journal on Selected Areas in Communications, 2001, 19 (5): 924- 934.
doi: 10.1109/49.924876
|
27 |
RYANW E , LIN S . Channel codes: classical and modern[M]. New York: Cambridge University, 2009: 389- 399.
|
28 |
HAN G , GUAN Y L , KONG L . Construction of irregular QC-LDPC codes via masking with ACE optimization[J]. IEEE Communications Letters, 2014, 18 (2): 348- 351.
doi: 10.1109/LCOMM.2014.010214.132463
|
29 |
WANG J , ZHANG K L , WEI J B , et al. Design of QPP interleavers for the parallel turbo decoding architecture[J]. IEEE Trans.on Circuits and Systems, 2016, 63 (2): 288- 99.
|
30 |
潘睿, 袁磊. 脉冲信道下基于深度学习的BP译码方法[J]. 系统工程与电子技术, 2020, 42 (9): 2116- 2122.
|
|
PAN R , YUAN L . BP decoding method based on deep learning in impulsive channels[J]. Systems Engineering and Electro-nics, 2020, 42 (9): 2116- 2122.
|
31 |
Std. 802.16e-2009. IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems[S]. USA: LAN/MAN Standards Committee, 2009.
|