系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3537-3547.doi: 10.12305/j.issn.1001-506X.2022.11.30
张薇1,2,*, 桑溪鸿1, 韩慧2, 杨博文1
收稿日期:
2021-08-16
出版日期:
2022-10-26
发布日期:
2022-10-29
通讯作者:
张薇
作者简介:
张薇(1972—), 女, 副教授, 博士, 主要研究方向为宽带无线通信|桑溪鸿(1997—), 男, 硕士研究生, 主要研究方向为V2V无线信道建模|韩慧(1982—), 女, 副研究员, 硕士, 主要研究方向为电磁环境特性与模拟、通信对抗|杨博文(1997—), 女, 硕士研究生, 主要研究方向为无人机通信信道建模
基金资助:
Wei ZHANG1,2,*, Xihong SANG1, Hui HAN2, Bowen YANG1
Received:
2021-08-16
Online:
2022-10-26
Published:
2022-10-29
Contact:
Wei ZHANG
摘要:
为准确刻画复杂无线通信场景下车对车多输入多输出信道特征, 结合双圆柱模型和椭球模型, 提出一种改进的三维基于几何随机信道模型, 并推导了仿真模型。该模型综合考虑环境中移动和静止有效散射体的分布, 能够体现各种实际场景中散射体分布形式、天线阵列排列方式及车流量密度对空时相关函数、多普勒功率谱密度等信道统计特性的影响。仿真结果表明, 该参考模型扩展了基于几何的车对车信道建模方法, 可服务于车联网环境下车载无线通信系统的设计和性能分析; 同时验证了仿真模型的准确性。
中图分类号:
张薇, 桑溪鸿, 韩慧, 杨博文. 基于几何的V2V三维MIMO信道建模及统计特性分析[J]. 系统工程与电子技术, 2022, 44(11): 3537-3547.
Wei ZHANG, Xihong SANG, Hui HAN, Bowen YANG. Geometry based 3D V2V MIMO channel modeling and statistical characteristic analysis[J]. Systems Engineering and Electronics, 2022, 44(11): 3537-3547.
表1
模型参数及定义"
参数 | 定义 |
a、D(2f) | 椭球的半长轴和焦距 |
RT、RR | 围绕TX和RX的圆柱圆半径 |
vT、vT | TX和RX的移动速度 |
αTv、αRv | TX和RX的移动方位角 |
θT、θT | TX和RX的天线阵列方位角 |
φT、φT | TX和RX的天线阵列仰角 |
dT、dT | TX和RX的天线阵列间距 |
αTNi、αRNi | TX到Ni的AAoD和Ni到RX的AAoA |
βTNi、βRNi | TX到Ni的EAoD和Ni到RX的EAoA |
αTLoS、αRLoS、 βTLoS、βRLoS | LoS分量的AAoD、AAoA、 EAoD、EAoA |
lp-q、lp-Ni、 lNi-q、lN1-N2、 | Tp-Rq、Tp-Ni、Ni-Rq、N1-N2、 OT-Ni、Ni-OR之间的路径长度 |
1 |
AKYILDIZ I F , KAK A , NIE S . 6G and beyond: the future of wireless communications systems[J]. IEEE Access, 2020, 8, 133995- 134030.
doi: 10.1109/ACCESS.2020.3010896 |
2 | WANG J H , ZHU K , HOSSAIN E . Green internet of vehicles (IoV) in the 6G era: toward sustainable vehicular communications and networking[J]. IEEE Trans.on Green Communications and Networking, 2021, 1, 2473- 2400. |
3 |
CHENG X , ZHANG R , YANG L . Wireless towards the era of intelligent vehicles[J]. IEEE Internet of Things, 2019, 6 (1): 188- 202.
doi: 10.1109/JIOT.2018.2884200 |
4 |
HUANG J X , WANG C , CHANG H T , et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (9): 2010- 2025.
doi: 10.1109/JSAC.2020.3000839 |
5 |
ZHANG P , CHEN J Q , YANG X L , et al. Recent research on massive MIMO propagation channels: a survey[J]. IEEE Communcations Magazine, 2018, 56 (12): 22- 29.
doi: 10.1109/MCOM.2018.1800196 |
6 | CHENG X , ZHANG R Q , CHEN S E . 5G-enabled vehicular communications and networking[J]. China Communications, 2018, 15 (7): 3- 6. |
7 |
HUANG Z W , CHENG X . A general 3D space-time-frequency nonstationary model for 6G channels[J]. IEEE Trans.on Wireless Communications, 2021, 20 (1): 535- 548.
doi: 10.1109/TWC.2020.3026356 |
8 | JIANG H , ZHOU J , KIKUCHI H . Generalized 3D scattering channel model with MIMO antenna systems[J]. China Communications (English Version), 2016, 13 (5): 66- 81. |
9 | DRETERN, KURNER T. A comparison of stochastic and deterministic channel models for V2V applications[C]//Proc. of the European Conference on Networks and Communications, 2020: 15-18. |
10 | LI Y , AI B , CHENG X , et al. A TDL based non-WSSUS vehicle to vehicle channel model[J]. International Journal of Antennas and Propagation, 2013, 2013, 103461. |
11 |
PETRUS P , REED J H , RAPPAPORT T S . Geometrical-based statistical macrocell channel model for mobile environments[J]. IEEE Trans.on Communications, 2002, 50 (3): 495- 502.
doi: 10.1109/26.990911 |
12 | AKKI A S , HABER F . A statistical model of mobile-to-mobile land communication channel[J]. IEEE Trans.on Vehicular Technology, 2006, 35 (1): 2- 7. |
13 | LI Y R , CHENG X , ZHANG N . Deterministic and stochastic simulators for non-isotropic V2V-MIMO wideband channels[J]. China Communications (English Version), 2018, 15 (7): 18- 29. |
14 | 周杰, 袁梅, 唐登洪. Von Mises分布下椭圆散射信道建模[J]. 北京邮电大学学报, 2017, 40 (2): 36- 42. |
ZHOU J , YUAN M , TANG D H . Modeling of elliptical scattering channel under Von Mises distribution[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40 (2): 36- 42. | |
15 |
JIANG H , ZHANG Z C , WU L , et al. A 3-D non-stationary wideband geometry-based channel model for MIMO vehicle-to-vehicle communications in tunnel environments[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (7): 6257- 6271.
doi: 10.1109/TVT.2019.2918333 |
16 |
CHENG X , WANG C X , LAURENSON D I , et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[J]. IEEE Trans.on Wireless Communications, 2009, 8 (9): 4824- 4835.
doi: 10.1109/TWC.2009.081560 |
17 | YU Y W, SMITH P J, DMOCJOWSKI P A, et al. 3D vs 2D channel models: spatial correlateion and channel capacity comparison and analysis[C]//Proc. of the IEEE International Conference on Communications, 2017. |
18 |
JIANG H , ZHANG Z C , DANG J , et al. A novel 3-D massive MIMO channel model for vehicle-to-vehicle communication environments[J]. IEEE Trans.on Communications, 2018, 66 (1): 79- 90.
doi: 10.1109/TCOMM.2017.2751555 |
19 | JIANG H , ZHANG Z C , DANG J , et al. A 3D non-stationary wideband geometry-base channel model for MIMO vehicle-to-vehicle communication systems[J]. IEEE Trans.on Vehicular Technology, 2019, 7 (17): 70719- 70732. |
20 | 马楠, 王妙伊. 基于几何的3D非平稳车辆到车辆MIMO信道建模[J]. 移动通信, 2019, 43 (11): 2- 7. |
MA N , WANG M Y . Geometry-based 3D non-stationary vehicle-to-vehicle MIMO channel modeling[J]. Mobile Communication, 2019, 43 (11): 2- 7. | |
21 | GU L L, MA N, CHEN J Q, et al. A novel 3D wideband geometry-based channel model for 5G massive MIMO vehicle-to-vehicle communications in urban merging areas[C]//Proc. of the IEEE International Conference on Communications Workshops, 2020: 7-11. |
22 |
MA N , CHEN J Q , ZHANG P , et al. Novel 3-D irregular-shaped model for massive MIMO V2V channels in street scattering environments[J]. IEEE Wireless Communications Letters, 2020, 9 (9): 1437- 1441.
doi: 10.1109/LWC.2020.2993237 |
23 | 曾文波, 何以刚, 李兵, 等. 车对车三维信道建模及空-时相关特性分析[J]. 通信学报, 2019, 40 (6): 116- 127. |
ZENG W B , HE Y G , LI B , et al. Vehicle-to-vehicle 3D channel modeling and space-time correlation characteristics analysis[J]. Journal on Communications, 2019, 40 (6): 116- 127. | |
24 | ZHU Q M , YANG Y , WANG C X , et al. Spatial correlations of a 3D non-stationary MIMO channel model with 3D antenna arrays and 3D arbitrary trajectories[J]. IEEE Wireless Communications Letters, 2019, 8 (2): 512- 515. |
25 | DU D R , ZENG X P , JIAN X , et al. Three-dimensional vehicle-to-vehicle channel modeling with multiple moving scatterers[J]. Mobile Information Systems, 2017, 2017, 7231417. |
26 | ZAJIC A G , STUBER G L . Three-dimensional modeling, simulation and, capacity analysis of space-time correlated mobile-to-mobile channels[J]. IEEE Trans.on Vehicular Technology, 2008, 57 (4): 2042- 2054. |
27 | BIAN J , WANG C X , HUANG J , et al. A 3D wideband non-stationary multi-mobility model for vehicle-to-vehicle MIMO channels[J]. IEEE Access, 2019, 7, 32562- 32577. |
28 | AKKI A S , HABER F . A statistical model for mobile-to-mobile land communication channel[J]. IEEE Trans.on Vehicular Technology, 1986, 35 (1): 2- 7. |
29 | 李伟东, 陈小敏, 王梅, 等. 三维非平稳V2V信道建模及统计特性研究[J]. 微波学报, 2019, 35 (6): 77- 83. |
LI W D , CHEN X M , WANG M , et al. Research on modeling and statistical characteristics of 3D non-stationary V2V channel[J]. Journal of Microwaves, 2019, 35 (6): 77- 83. | |
30 | CHENG X , YAO Q , WANG C X , et al. An improved parameter computation method for a MIMO V2V rayleigh fading channel simulator under non-isotropic scattering environments[J]. IEEE Communications Letters, 2013, 17 (2): 265- 268. |
31 | YUAN Y , WANG C X , CHENG X , et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Trans.on Wireless Communications, 2014, 13 (1): 298- 309. |
[1] | 张逸群, 兰岚, 廖桂生, 许京伟. 基于二次补偿的FDA-MIMO雷达抗主瓣欺骗式干扰方法[J]. 系统工程与电子技术, 2022, 44(9): 2769-2775. |
[2] | 廖金玲, 廖桂生, 许京伟, 兰岚. 基于EPC-MIMO编码设计的解距离模糊性能分析[J]. 系统工程与电子技术, 2022, 44(7): 2166-2174. |
[3] | 王宇卓, 朱圣棋, 李西敏, 兰岚. FDA MIMO双基雷达主瓣走动矫正距离模糊杂波抑制[J]. 系统工程与电子技术, 2022, 44(5): 1483-1494. |
[4] | 陈胜, 赵永波, 庞晓娇, 胡毅立, 曹成虎. 米波MIMO雷达波束空间精确最大似然算法[J]. 系统工程与电子技术, 2022, 44(5): 1520-1526. |
[5] | 禹永植, 张春红, 郝海. 非完美CSI情况下大规模MIMO系统的下行链路能效优化[J]. 系统工程与电子技术, 2022, 44(5): 1694-1700. |
[6] | 赵筱彤, 周建江. 低截获MIMO雷达改进MUSIC算法[J]. 系统工程与电子技术, 2022, 44(2): 490-497. |
[7] | 李正杰, 谢军伟, 张浩为, 邵雷, 陈文钰. 角闪烁噪声下的集中式MIMO雷达自适应资源分配算法[J]. 系统工程与电子技术, 2022, 44(2): 498-505. |
[8] | 唐军奎, 刘峥, 谢荣, 曾波. MIMO雷达稀疏阵列优化设计方法[J]. 系统工程与电子技术, 2022, 44(12): 3661-3666. |
[9] | 游致远, 胡国平, 周豪. 基于冗余阵元优化的双基地嵌套MIMO雷达目标DOD和DOA联合估计方法[J]. 系统工程与电子技术, 2022, 44(12): 3696-3702. |
[10] | 许耀华, 朱成龙, 王翊, 蒋芳, 丁梦琴, 王慧平. 基于神经网络的高并行大规模MIMO信号检测算法[J]. 系统工程与电子技术, 2022, 44(12): 3843-3849. |
[11] | 刘奕彬, 王春阳, 宫健, 谭铭. 基于频控阵MIMO雷达的低复杂度稳健波束形成算法[J]. 系统工程与电子技术, 2022, 44(11): 3388-3396. |
[12] | 景小荣, 宋振远, 罗悦, 马玉丹. IRS与人工噪声辅助的MIMO通信系统物理层安全方案设计[J]. 系统工程与电子技术, 2022, 44(10): 3266-3274. |
[13] | 王华华, 李延山, 余永坤. 低分辨率ADC下MIMO-OFDM系统中的广义Turbo信号检测[J]. 系统工程与电子技术, 2022, 44(1): 299-306. |
[14] | 刘紫燕, 马珊珊, 梁静, 朱明成, 袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. |
[15] | 陈晓婷, 王年, 丁大为, 张公泉, 卢宇. MIMO模型下的多元混合调制DCSK方案[J]. 系统工程与电子技术, 2021, 43(7): 1989-1994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||