系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3515-3521.doi: 10.12305/j.issn.1001-506X.2022.11.27

• 制导、导航与控制 • 上一篇    下一篇

基于k近邻平均距离的异步航迹关联算法

衣晓1, 曾睿1,2,*   

  1. 1. 海军航空大学, 山东 烟台 264001
    2. 中国人民解放军92325部队, 山西 大同 037001
  • 收稿日期:2021-01-26 出版日期:2022-10-26 发布日期:2022-10-29
  • 通讯作者: 曾睿
  • 作者简介:衣晓(1976—), 男, 教授, 博士, 主要研究方向为无线传感器网络、多源信息融合|曾睿(1995—), 女, 硕士研究生, 主要研究方向为数据关联
  • 基金资助:
    国防科技卓越青年人才基金(2017-JCJQ-ZQ-003);泰山学者工程专项经费(ts201712072)

Asynchronous track-to-track association algorithm based on k means distance of nearest neighbors

Xiao YI1, Rui ZENG1,2,*   

  1. 1. Naval Aviation University, Yantai 264001, China
    2. Unit 92325 of the PLA, Datong 037001, China
  • Received:2021-01-26 Online:2022-10-26 Published:2022-10-29
  • Contact: Rui ZENG

摘要:

针对异步不等速率下局部节点航迹关联复杂问题, 提出了基于k近邻平均距离的异步航迹直接关联算法。首先, 给出不等长航迹序列间的k近邻平均距离计算规则, 进而计算得到不等长航迹序列间的灰色关联度, 再利用经典分配法进行航迹关联判定。算法无需时间同步, 避免估值误差传播积累。仿真数据表明, 算法正确关联率高、耗时较短、局部节点采样周期和开机时机不一致等异步因素对算法影响不明显, 并且算法不受噪声分布形式和目标数目变化的影响。

关键词: 航迹关联, 异步航迹, k近邻平均距离, 灰色关联度, 多维分配

Abstract:

Aiming at the complex problem of local node track-to-track association under asynchronous and unequal rates, an asynchronous track-to-track direct association algorithm based on the k means distance of the nearest neighbors is proposed. First, the k means distance calculation rule of the nearest neighbor between different track sequences is given. Then the gray relational degree among different track sequences are calculated, the classical allocation method is used to determine the track-to-track association. The algorithm does not need time domain registration, and it avoids the accumulation of estimation error propagation. The simulation data show that the algorithm has high correct correlation rate and low time consumption. Asynchronous factors such as inconsistency of sampling period and startup time of local nodes have no obvious influence on the algorithm, and the algorithm is not affected by the change of noise distribution form and targets number.

Key words: track-to-track association, asynchronous track, k means distance of nearest neighbors, grey relational degree, multidimensional allocation

中图分类号: