系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3505-3514.doi: 10.12305/j.issn.1001-506X.2022.11.26

• 制导、导航与控制 • 上一篇    下一篇

基于MOEA/D-ARMS的无人机在线航迹规划

汪瀚洋1, 陈亮2,*, 徐海2, 白景波1   

  1. 1. 陆军工程大学野战工程学院, 江苏 南京 210007
    2. 陆军军事交通学院汽车士官学校, 安徽 蚌埠 233011
  • 收稿日期:2021-07-06 出版日期:2022-10-26 发布日期:2022-10-29
  • 通讯作者: 陈亮
  • 作者简介:汪瀚洋(1995—), 男, 硕士研究生, 主要研究方向为军事运筹、进化优化、无人机任务规划|陈亮(1981—), 男, 讲师, 博士, 主要研究方向为军事运筹、进化优化、无人机任务规划|徐海(1977—), 男, 讲师, 本科, 主要研究方向为军事运筹、车辆驾驶训练|白景波(1982—), 男, 讲师, 博士, 主要研究军事运筹决策分析
  • 基金资助:
    全军军事类研究生项目(JY2020C118)

UAV online trajectory planning based on MOEA/D-ARMS

Hanyang WANG1, Liang CHEN2,*, Hai XU2, Jingbo BAI1   

  1. 1. College of Field Engineering, Army Engineering University, Nanjing 210007, China
    2. Automobile NCO Academy, Army Military Transportation University, Bengbu 233011, China
  • Received:2021-07-06 Online:2022-10-26 Published:2022-10-29
  • Contact: Liang CHEN

摘要:

无人机(unmanned aerial vehicle, UAV)在线航迹规划是UAV协同控制关键技术之一, 在线航迹规划问题本质上是一种动态多目标优化问题。为了求解该问题, 提出了一种基于自适应应答机制选择的动态多目标进化算法(multi-objective evolutionary algorithon based on decomposition-adaptive reaction mechanism selection, MOEA/D-ARMS)。多种应答机制构成应答机制池, 以应答机制最近一次的整体表现赋予应答机制一定的奖励, 并采用基于概率的方法从应答机制池中选择应答机制。MOEA/D-ARMS分别在静态环境情况、突发威胁情况、突变威胁情况和偏好改变情况下进行仿真实验。仿真结果表明, MOEA/D-ARMS可有效求解UAV在线航迹规划问题。

关键词: 无人机, 航迹规划, 动态多目标进化算法, 自适应选择

Abstract:

Unmanned aerial vehicle (UAV) online trajectory planning is one of the key technologies of UAV collaborative control. The problem of online trajectory planning is essentially a dynamic multi-objective optimization problem. To solve this problem, a dynamic multi-objective evolutionry algorithm based on decomposition-adaptive reaction mechanism selection (MOEA/D-ARMS) is proposed. A variety of response mechanisms constitute a response mechanism pool. The response mechanism is given a certain reward based on the most recent overall performance of the response mechanism, and the response mechanism is selected from the response mechanism pool using a probability-based method. MOEA/D-ARMS is applied to four simulation instances, such as static environment instance, sudden threat instance, mutation threat instance and preference change instance. The simulation results demonstrate MOEA/D-ARMS is effective in solving the UAV online trajectory planning problem.

Key words: unmanned aerial vehicle (UAV), trajectory planning, dynamic multi-objective evolutionary algorithm (DMEA), adaptive selection

中图分类号: