1 |
MELO J , MATOS A . Survey on advances on terrain based navigation for autonomous underwater vehicles[J]. Ocean Engineering, 2017, 139, 250- 264.
doi: 10.1016/j.oceaneng.2017.04.047
|
2 |
BUDIYONO A . Advances in unmanned underwater vehicles technologies: modeling, control and guidance perspectives[J]. Indian Journal of Geo-Marine Sciences, 2009, 38 (3): 282- 295.
|
3 |
王佳. AUV浮力调节系统设计及控制策略研究[D]. 天津: 天津大学, 2017.
|
|
WANG J. Design of the variable buoyancy system of AUV and research of the control strategy[D]. Tianjin: Tianjin University, 2017.
|
4 |
CHEN T , ZHU M , ZHENG Z W . Asymmetric error-constrained path-following control of a stratospheric airship with distur-bances and actuator saturation[J]. Mechanical Systems and Signal Processing, 2019, 119, 501- 522.
doi: 10.1016/j.ymssp.2018.10.003
|
5 |
张勋, 边信黔, 唐照东. AUV均衡系统设计及垂直面运动控制研究[J]. 中国造船, 2012, 53 (1): 28- 36.
|
|
ZHANG X , BIAN X Q , TANG Z D , et al. Design of balance system for AUV and study on motion control in vertical plane[J]. Shipbuilding of China, 2012, 53 (1): 28- 36.
|
6 |
SYLVESTER A H, DELMERICO J A, TRIMNLE A Z, et al. Variable buoyancy control for a bottom skimming autonomous underwater vehicle[C]//Proc. of the IEEE Oceans-St. John's, 2014.
|
7 |
王雨, 郑荣, 武建国. 基于浮力调节系统的AUV深度控制研究[J]. 自动化与仪表, 2015, 30 (4): 6- 10.
doi: 10.3969/j.issn.1001-9944.2015.04.002
|
|
WANG Y , ZHENG R , WU J G . Research on AUV depth control based on the variable buoyancy system[J]. Process Automation Instrumentation, 2015, 30 (4): 6- 10.
doi: 10.3969/j.issn.1001-9944.2015.04.002
|
8 |
孙庆刚, 郑荣, 安家玉. 基于浮力调节系统的AUV定深悬浮控制[J]. 海洋技术学报, 2017, 36 (6): 33- 37.
|
|
SUN Q G , ZHENG R , AN J Y , et al. Study on the AUV depth and hovering control based on variable buoyancy system[J]. Ocean Technology, 2017, 36 (6): 33- 37.
|
9 |
ZAVISLAK C , KEOW A , CHEN Z , et al. AUV buoyancy control with hard and soft actuators[J]. IEEE Control Systems Letters, 2020, 5 (6): 1874- 1879.
|
10 |
TIWARI B K , SHARMA R . Design and analysis of a variable buoyancy system for efficient hovering control of underwater vehicles with state feedback controller[J]. Journal of Marine Science and Engineering, 2020, 8 (4): 263.
doi: 10.3390/jmse8040263
|
11 |
SUN Y C , DU Y T , QIN H D . Distributed adaptive neural network constraint containment control for the benthic autonomous underwater vehicles[J]. Neurocomputing, 2022, 484, 89- 98.
doi: 10.1016/j.neucom.2021.03.137
|
12 |
TARBOURIECH S , TURNER M . Anti-windup design: an overview of some recent advances and open problems[J]. IET Control Theory & Applications, 2009, 3 (1): 1- 19.
|
13 |
WANG S Y , GAO Y B , LIU J X , et al. Saturated sliding mode control with limited magnitude and rate[J]. IET Control Theory & Applications, 2018, 12 (8): 1075- 1085.
|
14 |
SHAMMA J S . Anti-windup via constrained regulation with observers[J]. Systems & Control Letters, 2000, 40 (4): 261- 268.
|
15 |
RICHTER S , NEIL C N , MORARI M . Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[J]. IEEE Trans.on Automatic Control, 2012, 57 (99): 1391- 1403.
|
16 |
JIANG Y , ORAVEC J , HOUSKA B , et al. Parallel MPC for linear systems with input constraints[J]. IEEE Trans.on Automatic Control, 2020, 66 (7): 3401- 3408.
|
17 |
MAZENC F , MALISOFF M , BURLION L , et al. Bounded backstepping control and robustness analysis for time-varying systems under converging-input-converging-state conditions[J]. European Journal of Control, 2018, 42, 15- 24.
|
18 |
PRIANDIRI V P, MARHAM Q C, TRILAKSONO B R, et al. Control system for simplified nonlinear dynamic model of 6 DOF hybrid underwater glider using PID controller with anti-windup[C]//Proc. of the IEEE 9th International Conference on System Engineering and Technology, 2019: 50-55.
|
19 |
WU N L, LIU Z L, WU C, et al. Robust MRAC with anti-windup compensator for the depth channel of an autonomous underwater vehicle[C]//Proc. of the 28th International Ocean and Polar Engineering Conference, 2018.
|
20 |
CUI R X , ZHANG X , CUI D . Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonli-nearities[J]. Ocean Engineering, 2016, 123, 45- 54.
|
21 |
NGUYEN A T , DAMBRINE M , LAUBER J . Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[J]. Asian Journal of Control, 2016, 18 (5): 1641- 1654.
|
22 |
ZHENG C B, WU X Y, HUANG C Q. Two step approach for robust anti-windup design[C]//Proc. of the IEEE International Conference on Advanced Mechatronic Systems, 2017.
|
23 |
TANAKITKORN K , WILSON P A , TURNOCK S R , et al. Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification[J]. Mechatronics, 2017, 41, 67- 81.
|
24 |
CHEN T, ZHANG W, ZHOU J J, et al. Depth control of AUV using active disturbance rejection controller[C]//Proc. of the IEEE 33rd Chinese Control Conference, 2014: 7948-7952.
|
25 |
YU W Z , XU H X , HAN X , et al. Fault-tolerant control for dynamic positioning vessel with thruster faults based on the neural modified extended state observer[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2019, 51 (9): 5905- 5917.
|
26 |
谭诗利, 雷虎民, 王鹏飞. 基于正切Sigmoid函数的跟踪微分器[J]. 系统工程与电子技术, 2019, 41 (7): 1590- 1596.
|
|
TAN S L , LEI H M , WANG P F . Design of tracking differentiator based on tangent Sigmoid function[J]. Systems Engineering and Electronics, 2019, 41 (7): 1590- 1596.
|
27 |
QU Y , XU H X , YU W Z , et al. Inverse optimal control for speed-varying path following of marine vessels with actuator dynamics[J]. Journal of Marine Science and Application, 2017, 16 (2): 225- 236.
|
28 |
GAO W , SELMIC R R . Neural network control of a class of nonlinear systems with actuator saturation[J]. IEEE Trans.on Neural Networks, 2006, 17 (1): 147- 156.
|
29 |
郭晓丽, 方建印. Lyapunov稳定性逆定理的另一种证明[J]. 郑州大学学报(理学版), 2004, (2): 22- 24.
|
|
GUO X L , FANG J Y . Another proof of the converse Lyapunov stability theorem[J]. Journal of Zhengzhou University(Natural Science Edition), 2004, (2): 22- 24.
|
30 |
QU Y , XU H X , YU W Z , et al. Inverse optimal control for speed-varying path following of marine vessels with actuator dynamics[J]. Journal of Marine Science and Application, 2017, 16 (2): 225- 236.
|
31 |
徐海祥, 胡聪, 余文曌, 等. 基于LESO无人水下航行器鲁棒动态面悬停控制[J]. 华中科技大学学报(自然科学版), 2021, 49 (8): 98- 103.98-103, 126
|
|
XU H X , HU C , YU W Z , et al. Robust dynamic surface controller for hovering control of unmanned underwater vehicle based on LESO[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (8): 98- 103.98-103, 126
|