1 |
OTOTE D A , LI B , AI B , et al. A decision-making algorithm for maritime search and rescue plan[J]. Sustainability, 2019, 11 (7): 2084- 2099.
doi: 10.3390/su11072084
|
2 |
JIN Y Q , WANG N , SONG Y T , et al. Optimization model and algorithm to locate rescue bases and allocate rescue vessels in remote oceans[J]. Soft Computing, 2021, 25 (4): 3317- 3334.
doi: 10.1007/s00500-020-05378-6
|
3 |
GUO Y , YE Y Q , YANG Q Q , et al. A multi-objective INLP model of sustainable resource allocation for long-range maritime search and rescue[J]. Sustainability, 2019, 11 (3): 929- 953.
doi: 10.3390/su11030929
|
4 |
RAHMES M, CHESTER D, HUNT J, et al. Optimizing cooperative cognitive search and rescue UAVs[C]//Proc. of the Autonomous Systems: Sensors, Vehicles, Security and the Internet of Everything, 2018.
|
5 |
LIANG X Y , DU X S , WANG G L , et al. A deep reinforcement learning network for traffic light cycle control[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (2): 1243- 1253.
doi: 10.1109/TVT.2018.2890726
|
6 |
WANG Y D , LIU H , ZHENG W B , et al. Multi-objective workflow scheduling with deep-Q-network-based multi-agent reinforcement learning[J]. IEEE Access, 2019, 7, 39974- 39982.
doi: 10.1109/ACCESS.2019.2902846
|
7 |
LUONG N C , HOANG D T , GONG S , et al. Applications of deep reinforcement learning in communications and networking: a survey[J]. IEEE Communications Surveys and Tutorials, 2019, 21 (4): 3133- 3174.
doi: 10.1109/COMST.2019.2916583
|
8 |
MNIH V , KAVUKCUOGLU K , SILVER D , et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236
|
9 |
史腾飞, 王莉, 黄子蓉. 序列多智能体强化学习算法[J]. 模式识别与人工智能, 2021, 34 (3): 206- 213.
|
|
SHI T F , WANG L , HUANG Z R . Sequence to sequence multi-agent reinforcement learning algorithm[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (3): 206- 213.
|
10 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. [2021-10-12]. https://arxiv.org/abs/1312.5602.
|
11 |
SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB/OL]. [2021-10-12]. https://arxiv.org/abs/1511.05952.
|
12 |
VAN H H, GUEZ A, SILVER D. Deep reinforcement learning with double q-learning[C]//Proc. of the AAAI conference on Artificial Intelligence, 2016.
|
13 |
WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//Proc. of the International Conference on Machine Learning, 2016: 1995-2003.
|
14 |
BELLEMARE M G, DABNEY W, MUNOS R. A distributional perspective on reinforcement learning[C]//Proc. of the International Conference on Machine Learning, 2017: 449-458.
|
15 |
FORTUNATO M, AZAR M G, PIOT B, et al. Noisy networks for exploration[EB/OL]. [2021-10-12]. https://arxiv.org/abs/1706.10295.
|
16 |
HESSEL M, MODAYIL J, VAN H H, et al. Rainbow: combining improvements in deep reinforcement learning[C]//Proc. of the National Conference on Artificial Intelligence, 2018.
|
17 |
SUTTON R S , BARTO A G . Reinforcement learning: an introduction[M]. Cambridge: Massachusetts Institute of Technology press, 1998.
|
18 |
SUTTON R S . Learning to predict by the methods of temporal differences[J]. Machine learning, 1988, 3 (1): 9- 44.
|
19 |
HAUSKNECHT M, STONE P. Deep recurrent Q-learning for partially observable MDPs[EB/OL]. [2021-10-12]. https://arxiv.org/abs/1507.06527v4.
|
20 |
轩永波, 黄长强, 吴文超, 等. 运动目标的多无人机编队覆盖搜索决策[J]. 系统工程与电子技术, 2013, 35 (3): 539- 544.
doi: 10.3969/j.issn.1001-506X.2013.03.15
|
|
XUN Y B , HUANG C Q , WU W C , et al. Coverage search strategies for moving targets using multiple unmanned aerial vehicle teams[J]. Systems Engineering and Electronics, 2013, 35 (3): 539- 544.
doi: 10.3969/j.issn.1001-506X.2013.03.15
|
21 |
高盈盈. 海上搜救中无人机搜寻规划方法及应用研究[D]. 长沙: 国防科技大学, 2020.
|
|
GAO Y Y. Research on UAV search planning method and application in maritime search and rescue[D]. Changsha: National University of Defense Technology, 2020.
|
22 |
XIONG W T , GELDER P V , YANG K W . A decision support method for design and operationalization of search and rescue in maritime emergency[J]. Ocean Engineering, 2020, 207, 107399- 107415.
doi: 10.1016/j.oceaneng.2020.107399
|
23 |
GALLEGO A J , PERTUSA A , GIL P , et al. Detection of bodies in maritime rescue operations using unmanned aerial vehicles with multispectral cameras[J]. Journal of Field Robotics, 2019, 36 (4): 782- 796.
doi: 10.1002/rob.21849
|
24 |
高春庆, 寇英信, 李战武, 等. 小型无人机协同覆盖侦察路径规划[J]. 系统工程与电子技术, 2019, 41 (6): 1294- 1299.
|
|
GAO C Q , KOU Y X , LI Z W . Cooperative coverage path planning for small UAVs[J]. Systems Engineering and Electronics, 2019, 41 (6): 1294- 1299.
|
25 |
YUE W , GUAN X H , WANG L Y . A novel searching method using reinforcement learning scheme for multi-UAVs in unknown environments[J]. Applied Sciences, 2019, 9 (22): 4964- 4978.
doi: 10.3390/app9224964
|
26 |
CHENG Y , ZHANG W D . Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels[J]. Neurocomputing, 2018, 272, 63- 73.
doi: 10.1016/j.neucom.2017.06.066
|
27 |
LI R P , ZHAO Z F , SUN Q , et al. Deep reinforcement learning for resource management in network slicing[J]. IEEE Access, 2018, 6, 74429- 74441.
doi: 10.1109/ACCESS.2018.2881964
|
28 |
TAMPUU A , MATⅡSEN T , KODELJA D , et al. Multiagent cooperation and competition with deep reinforcement learning[J]. Plos One, 2017, 12 (4): e0172395.
|