1 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc. of the IEEE International Conference on Neural Networks, 1995: 1942-1948.
|
2 |
WANG D S , TAN D P , LIU L . Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22 (2): 387- 408.
doi: 10.1007/s00500-016-2474-6
|
3 |
MISTRY K , ZHANG L , NEOH S C , et al. A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition[J]. IEEE Trans.on Cybernetics, 2016, 47 (6): 1496- 1509.
|
4 |
MELO H , WATADA J . Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network[J]. Neurocomputing, 2016, 172, 405- 412.
doi: 10.1016/j.neucom.2015.03.104
|
5 |
SONG B Y , WANG Z D , ZOU L . On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm[J]. Cognitive Computation, 2017, 9 (1): 5- 17.
doi: 10.1007/s12559-016-9442-4
|
6 |
ZHAO S Q , ZENG D G , WANG W H , et al. Mutation grey wolf elite PSO balanced XGBoost for radar emitter individual identification based on measured signals[J]. Measurement, 2020, 159, 107777.
doi: 10.1016/j.measurement.2020.107777
|
7 |
HARIKALA T , SATYA N R . PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network[J]. ETRI Journal, 2021, 43 (1): 17- 30.
doi: 10.4218/etrij.2019-0351
|
8 |
SIVARANJANI R , ROOMI S M M , SENTHILARASI M . Speckle noise removal in SAR images using multi-objective PSO (MOPSO) algorithm[J]. Applied Soft Computing, 2019, 76, 671- 681.
doi: 10.1016/j.asoc.2018.12.030
|
9 |
YIGIT E . A translational motion compensation technique for inverse synthetic aperture radar images using multi-objective particle swarm optimization algorithm[J]. Microwave and Optical Technology Letters, 2020, 62 (6): 2217- 2225.
doi: 10.1002/mop.32314
|
10 |
ZHANG L , SHI C L , NIU J , et al. DOA estimation for HFSWR target based on PSO-ELM[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 3504205.
|
11 |
ALIZADEH M M , HOSSEINI S E . Pattern synthesize of a cylindrical conformal array antenna by PSO algorithm[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30 (4): e22137.
|
12 |
韩江洪, 李正荣, 魏振春. 一种自适应粒子群优化算法及其仿真研究[J]. 系统仿真学报, 2006, 18 (10): 2969- 2971.
doi: 10.3969/j.issn.1004-731X.2006.10.070
|
|
HAN J H , LI Z R , WEI Z C . An adaptive particle swarm optimization algorithm and its simulation research[J]. Journal of System Simulation, 2006, 18 (10): 2969- 2971.
doi: 10.3969/j.issn.1004-731X.2006.10.070
|
13 |
姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报, 2012, 39 (4): 74- 80.
doi: 10.3969/j.issn.1001-2400.2012.04.014
|
|
JIANG J G , TIAN M , WANG X Q , et al. Adaptive particle swarm optimization via disturbing acceleration coefficents[J]. Journal of Xidian University, 2012, 39 (4): 74- 80.
doi: 10.3969/j.issn.1001-2400.2012.04.014
|
14 |
王存睿, 段晓东, 刘向东, 等. 改进的基本粒子群优化算法[J]. 计算机工程, 2004, 30 (21): 35- 37.
doi: 10.3969/j.issn.1000-3428.2004.21.016
|
|
WANG C R , DUAN X D , LIU X D , et al. A modified basic particle swarm optimization algorithm[J]. Computer Engineering, 2004, 30 (21): 35- 37.
doi: 10.3969/j.issn.1000-3428.2004.21.016
|
15 |
PLUHACEK M , SENKERIK R , DAVENDRA D . Chaos particle swarm optimization with Eensemble of chaotic systems[J]. Swarm and Evolutionary Computation, 2015, 25, 29- 35.
doi: 10.1016/j.swevo.2015.10.008
|
16 |
丛琳, 焦李成, 沙宇恒. 正交免疫克隆粒子群多目标优化算法[J]. 电子与信息学报, 2008, 30 (10): 2320- 2324.
|
|
CONG L , JIAO L C , SHA Y H . Orthogonal immune clone particle swarm algorithm on multi-objective optimization[J]. Journal of Electronics & Information Technology, 2008, 30 (10): 2320- 2324.
|
17 |
鲁华祥, 尹世远, 龚国良, 等. 基于深度确定性策略梯度的粒子群算法[J]. 电子科技大学学报, 2021, 50 (2): 199- 206.
|
|
LU H X , YIN S Y , GONG G L , et al. A particle swarm optimization algorithm based on deep deterministic policy gradient[J]. Journal of University of Electronic Science and Technology of China, 2021, 50 (2): 199- 206.
|
18 |
DING Z , HUANG Y H , YUAN H , et al. Introduction to reinforcement learning[M]. Singapore: Springer, 2020: 47- 123.
|
19 |
闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48 (4): 120- 127.
|
|
YAN Q M , MA R Q , MA Y X , et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48 (4): 120- 127.
|
20 |
GUILMEAU T, CHOUZENOUX E, ELVIRA V. Simulated annealing: a review and a new scheme[C]//Proc. of the IEEE Statistical Signal Processing Workshop, 2021: 101-105.
|
21 |
CAO H P , AN X M . A sparse Quasi-Newton method based on automatic differentiation for solving unconstrained optimization problems[J]. Symmetry, 2021, 13 (11): 2093- 2113.
doi: 10.3390/sym13112093
|
22 |
CHAITANYA K , SOMAYAJULU D V L N , KRISHNA P R . Memory-based approaches for eliminating premature convergence in particle swarm optimization[J]. Applied Intelligence, 2021, 51 (7): 4575- 4608.
|
23 |
NAGRA A A , HAN F , LING Q H . An improved hybrid self-inertia weight adaptive particle swarm optimization algorithm with local search[J]. Engineering Optimization, 2019, 51 (7): 1115- 1132.
|
24 |
MOHAMMADI-IVATLOO B , RABIEE A , SOROUDI A , et al. Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems[J]. International Journal of Electrical Power & Energy Systems, 2012, 42 (1): 508- 516.
|
25 |
焦巍, 刘光斌, 张艳红. 求解约束优化的模拟退火PSO算法[J]. 系统工程与电子技术, 2010, 32 (7): 1532- 1536.
|
|
JIAO W , LIU G B , ZHANG Y H . Particle swarm optimization based on simulated annealing for solving constrained optimization problems[J]. Systems Engineering and Electronics, 2010, 32 (7): 1532- 1536.
|
26 |
PAN X Q , XUE L M , LU Y , et al. Hybrid particle swarm optimization with simulated annealing[J]. Multimedia Tools and Applications, 2019, 78 (21): 29921- 29936.
|
27 |
GARG H . A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274, 292- 305.
|
28 |
XU G P , CUI Q L , SHI X H , et al. Particle swarm optimization based on dimensional learning strategy[J]. Swarm and Evolutionary Computation, 2019, 45, 33- 51.
|
29 |
DURMUS A , KURBAN R , KAEAKOSE E . A comparison of swarm-based optimization algorithms in linear antenna array synthesis[J]. Journal of Computational Electronics, 2021, 20 (4): 1520- 1531.
|
30 |
包子阳, 余继周. 基于Matlab的遗传算法及其在稀布阵列天线中的应用[M]. 2版 北京: 电子工业出版社, 2017.
|
|
BAO Z Y , YU J Z . Genetic algorithm based on Matlab and its application in sparse array antenna[M]. 2ed Beijing: Publishing House of Electronics Industry, 2017.
|