| 1 | SUN B Z ,  ZHOU X M ,  LIN N N .  Diversified binary relation-based fuzzy multi-granulation rough set over two universes and application to multiple attribute group decision making[J]. Information Fusion, 2020, 55, 91- 104. doi: 10.1016/j.inffus.2019.07.013
 | 
																													
																						| 2 | PEIDE L ,  QAISAR K ,  TAHIR M .  Multiple-attribute decision making based on single-valued neutrosophic Schweizer Sklar prioritized aggregation operator[J]. Cognitive Systems Research, 2019, 57, 175- 196. doi: 10.1016/j.cogsys.2018.10.005
 | 
																													
																						| 3 | SUO M L ,  ZHU B L ,  ZHANG Y Q , et al.  Fuzzy bayes risk based on Mahalanobis distance and Gaussian kernel for weight assignment in labeled multiple attribute decision making[J]. Knowledge-Based Systems, 2018, 152 (15): 26- 39. | 
																													
																						| 4 | ZADEH L A .  Fuzzy sets[J]. Information and Control, 1965, 8 (3): 338- 353. doi: 10.1016/S0019-9958(65)90241-X
 | 
																													
																						| 5 | ATANASSOV K T .  Intuitionistic fuzzy sets[J]. Fuzzy Sets Systems, 1986, 20 (1): 87- 96. doi: 10.1016/S0165-0114(86)80034-3
 | 
																													
																						| 6 | YAGER R R ,  BASOV A M .  Pthagorean membership grades, complex numbers and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452. doi: 10.1002/int.21584
 | 
																													
																						| 7 | 高峰记.  概率区间型决策的统计优势[J]. 系统工程理论与实践, 1995, 15 (9): 17- 20. | 
																													
																						|  | GAO F J .  Statistical superiority of decision making under interval of the probabilities[J]. System Engineering Theory & Practice, 1995, 15 (9): 17- 20. | 
																													
																						| 8 | YAGER R R .  Pythagorean membership grades in multi-criteria decision making[J]. IEEE Trans.on Fuzzy Systems, 2014, 22 (4): 958- 965. doi: 10.1109/TFUZZ.2013.2278989
 | 
																													
																						| 9 | ELIF H ,  CENGIZ K .  A novel interval-valued Pythagorean fuzzy QFD method and its application to solar photovoltaic technology development[J]. Computers & Industrial Engineering, 2019, 132 (6): 361- 372. | 
																													
																						| 10 | TANG Y ,  YANG Y .  Sustainable e-bike sharing recycling supplier selection: an interval-valued Pythagorean fuzzy MAGDM method based on preference information technology[J]. Journal of Cleaner Production, 2021, 287, 125530. | 
																													
																						| 11 | FU X L ,  OUYANG T X ,  YANG Z L , et al.  A product ranking method combining the features-opinion pairs mining and interval-valued Pythagorean fuzzy sets[J]. Applied Soft Computing, 2020, 97, 106803. doi: 10.1016/j.asoc.2020.106803
 | 
																													
																						| 12 | GOZDE B ,  ALI O A .  AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles[J]. Applied Soft Computing, 2021, 99, 106948. | 
																													
																						| 13 | YU C X ,  SHAO Y F ,  WANG K , et al.  A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment[J]. Expert Systems with Applications, 2019, 121, 1- 17. | 
																													
																						| 14 | VAHID M ,  SEYED M ,  MOUSAVIA M , et al.  Evaluating large, high-technology project portfolios using a novel interval-valued Pythagorean fuzzy set framework: an automated crane project case study[J]. Expert Systems with Applications, 2020, 162, 113007. | 
																													
																						| 15 | KAHNEMAN D ,  TVERSKY A .  Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47 (2): 263- 291. | 
																													
																						| 16 | TVERSKY A ,  KAHNEMAN D .  Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of risk and uncertainty, 1992, 5 (4): 297- 323. | 
																													
																						| 17 | DING X F ,  LIU H C ,  SHI H .  A dynamic approach for emergency decision making based on prospect theory with interval-valued Pythagorean fuzzy linguistic variables[J]. Computers & Industrial Engineering, 2019, 131 (5): 57- 65. | 
																													
																						| 18 | 常娟, 刘卫锋.  基于前景理论的毕达哥拉斯模糊TOPSIS法及其决策应用[J]. 河南工程学院学报, 2020, 32 (2): 74- 80. | 
																													
																						|  | CHANG J ,  LIU W F .  Pythagorean fuzzy TOPSIS method based on prospect theory and its decision application[J]. Journal of Henan University of Engineering, 2020, 32 (2): 74- 80. | 
																													
																						| 19 | LIU H H ,  SONG Y Y ,  YANG G L .  Cross-efficiency evaluation in data envelopment analysis based on prospect theory[J]. European Journal of Operational Research, 2019, 273 (1): 364- 375. | 
																													
																						| 20 | 李美娟, 卢锦呈.  基于一种新得分函数和累积前景理论的毕达哥拉斯模糊TOPSIS法[J]. 控制与决策, 2022, 2, 483- 492. | 
																													
																						|  | LI M J ,  LU J C .  Pythagorean fuzzy TOPSIS based on a novel score function and cumulative prospect theory[J]. Control and Decision, 2022, 2, 483- 492. | 
																													
																						| 21 | KAMAL K ,  CHEN S M .  Multi-attribute decision making based on interval-valued intuitionistic fuzzy values, score function of connection numbers, and the set pair analysis theory[J]. Information Sciences, 2021, 551, 100- 112. | 
																													
																						| 22 | 金珍. 基于毕达哥拉斯模糊集的多准则群决策理论与方法研究[D]. 南昌: 江西财经大学, 2019: 130-144. | 
																													
																						|  | JIN Z. Research on multi-criteria group decision making theories and methods with pythagorean fuzzy sets[D]. Nanchang: Jiangxi University of Finance and Economics, 2019: 130-144. | 
																													
																						| 23 | LIANG W ,  ZHANG X L ,  LIU M F .  The maximizing deviation method based on interval-valued Pythagorean fuzzy weighted aggregating operator for multiple criteria group decision analysis[J]. Discrete Dynamics in Nature and Society, 2015, 2015, 746- 572. | 
																													
																						| 24 | ZHANG X .  Multi-criteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods[J]. Information Sciences, 2016, 330, 104- 124. | 
																													
																						| 25 | GARG H .  A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31. |