1 |
SUN B Z , ZHOU X M , LIN N N . Diversified binary relation-based fuzzy multi-granulation rough set over two universes and application to multiple attribute group decision making[J]. Information Fusion, 2020, 55, 91- 104.
doi: 10.1016/j.inffus.2019.07.013
|
2 |
PEIDE L , QAISAR K , TAHIR M . Multiple-attribute decision making based on single-valued neutrosophic Schweizer Sklar prioritized aggregation operator[J]. Cognitive Systems Research, 2019, 57, 175- 196.
doi: 10.1016/j.cogsys.2018.10.005
|
3 |
SUO M L , ZHU B L , ZHANG Y Q , et al. Fuzzy bayes risk based on Mahalanobis distance and Gaussian kernel for weight assignment in labeled multiple attribute decision making[J]. Knowledge-Based Systems, 2018, 152 (15): 26- 39.
|
4 |
ZADEH L A . Fuzzy sets[J]. Information and Control, 1965, 8 (3): 338- 353.
doi: 10.1016/S0019-9958(65)90241-X
|
5 |
ATANASSOV K T . Intuitionistic fuzzy sets[J]. Fuzzy Sets Systems, 1986, 20 (1): 87- 96.
doi: 10.1016/S0165-0114(86)80034-3
|
6 |
YAGER R R , BASOV A M . Pthagorean membership grades, complex numbers and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452.
doi: 10.1002/int.21584
|
7 |
高峰记. 概率区间型决策的统计优势[J]. 系统工程理论与实践, 1995, 15 (9): 17- 20.
|
|
GAO F J . Statistical superiority of decision making under interval of the probabilities[J]. System Engineering Theory & Practice, 1995, 15 (9): 17- 20.
|
8 |
YAGER R R . Pythagorean membership grades in multi-criteria decision making[J]. IEEE Trans.on Fuzzy Systems, 2014, 22 (4): 958- 965.
doi: 10.1109/TFUZZ.2013.2278989
|
9 |
ELIF H , CENGIZ K . A novel interval-valued Pythagorean fuzzy QFD method and its application to solar photovoltaic technology development[J]. Computers & Industrial Engineering, 2019, 132 (6): 361- 372.
|
10 |
TANG Y , YANG Y . Sustainable e-bike sharing recycling supplier selection: an interval-valued Pythagorean fuzzy MAGDM method based on preference information technology[J]. Journal of Cleaner Production, 2021, 287, 125530.
|
11 |
FU X L , OUYANG T X , YANG Z L , et al. A product ranking method combining the features-opinion pairs mining and interval-valued Pythagorean fuzzy sets[J]. Applied Soft Computing, 2020, 97, 106803.
doi: 10.1016/j.asoc.2020.106803
|
12 |
GOZDE B , ALI O A . AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles[J]. Applied Soft Computing, 2021, 99, 106948.
|
13 |
YU C X , SHAO Y F , WANG K , et al. A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment[J]. Expert Systems with Applications, 2019, 121, 1- 17.
|
14 |
VAHID M , SEYED M , MOUSAVIA M , et al. Evaluating large, high-technology project portfolios using a novel interval-valued Pythagorean fuzzy set framework: an automated crane project case study[J]. Expert Systems with Applications, 2020, 162, 113007.
|
15 |
KAHNEMAN D , TVERSKY A . Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47 (2): 263- 291.
|
16 |
TVERSKY A , KAHNEMAN D . Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of risk and uncertainty, 1992, 5 (4): 297- 323.
|
17 |
DING X F , LIU H C , SHI H . A dynamic approach for emergency decision making based on prospect theory with interval-valued Pythagorean fuzzy linguistic variables[J]. Computers & Industrial Engineering, 2019, 131 (5): 57- 65.
|
18 |
常娟, 刘卫锋. 基于前景理论的毕达哥拉斯模糊TOPSIS法及其决策应用[J]. 河南工程学院学报, 2020, 32 (2): 74- 80.
|
|
CHANG J , LIU W F . Pythagorean fuzzy TOPSIS method based on prospect theory and its decision application[J]. Journal of Henan University of Engineering, 2020, 32 (2): 74- 80.
|
19 |
LIU H H , SONG Y Y , YANG G L . Cross-efficiency evaluation in data envelopment analysis based on prospect theory[J]. European Journal of Operational Research, 2019, 273 (1): 364- 375.
|
20 |
李美娟, 卢锦呈. 基于一种新得分函数和累积前景理论的毕达哥拉斯模糊TOPSIS法[J]. 控制与决策, 2022, 2, 483- 492.
|
|
LI M J , LU J C . Pythagorean fuzzy TOPSIS based on a novel score function and cumulative prospect theory[J]. Control and Decision, 2022, 2, 483- 492.
|
21 |
KAMAL K , CHEN S M . Multi-attribute decision making based on interval-valued intuitionistic fuzzy values, score function of connection numbers, and the set pair analysis theory[J]. Information Sciences, 2021, 551, 100- 112.
|
22 |
金珍. 基于毕达哥拉斯模糊集的多准则群决策理论与方法研究[D]. 南昌: 江西财经大学, 2019: 130-144.
|
|
JIN Z. Research on multi-criteria group decision making theories and methods with pythagorean fuzzy sets[D]. Nanchang: Jiangxi University of Finance and Economics, 2019: 130-144.
|
23 |
LIANG W , ZHANG X L , LIU M F . The maximizing deviation method based on interval-valued Pythagorean fuzzy weighted aggregating operator for multiple criteria group decision analysis[J]. Discrete Dynamics in Nature and Society, 2015, 2015, 746- 572.
|
24 |
ZHANG X . Multi-criteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods[J]. Information Sciences, 2016, 330, 104- 124.
|
25 |
GARG H . A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31.
|