系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3455-3462.doi: 10.12305/j.issn.1001-506X.2022.11.20
石宸睿, 田露, 徐湛*, 职如昕, 陈晋辉
收稿日期:
2021-11-10
出版日期:
2022-10-26
发布日期:
2022-10-29
通讯作者:
徐湛
作者简介:
石宸睿(1997—), 男, 硕士研究生, 主要研究方向为智能信号处理|田露(1989—), 女, 讲师, 博士, 主要研究方向为卫星通信与空间信号处理|徐湛(1982—), 男, 教授, 博士, 主要研究方向为无线通信和信号处理|职如昕(1985—), 女, 实验师, 博士, 主要研究方向为卫星网络与星间路由算法|陈晋辉(1977—), 女, 助理研究员, 博士, 主要研究方向为无线通信
基金资助:
Chenrui SHI, Lu TIAN, Zhan XU*, Ruxin ZHI, Jinhui CHEN
Received:
2021-11-10
Online:
2022-10-26
Published:
2022-10-29
Contact:
Zhan XU
摘要:
应急通信感知装备效能评价可支撑相关装备的发展规划, 而现有评价方法主观性强, 且自适应能力有待提升。因此, 提出一种基于粒子群优化(particle swarm optimization, PSO)算法的改进反向传播(back propagation, BP)神经网络的应急通信感知装备效能评价方法, 旨在建立客观精准的效能评价。首先面向实战效能构建了三级效能评价指标体系, 然后将样本数据进行主成分分析法降维, 建立BP神经网络回归模型, 并结合PSO算法对模型的连接权值与阈值进行优化, 形成PSO-BP模型以避免局部极小值问题, 获得可评价具体装备效能时的神经网络模型。实例分析表明, PSO-BP相较于BP神经网络模型评价的均方误差减少了28.18%, 表明PSO-BP模型具有更高的准确性。
中图分类号:
石宸睿, 田露, 徐湛, 职如昕, 陈晋辉. 基于PSO-BP的应急通信感知装备效能评价方法[J]. 系统工程与电子技术, 2022, 44(11): 3455-3462.
Chenrui SHI, Lu TIAN, Zhan XU, Ruxin ZHI, Jinhui CHEN. Effectiveness evaluation method of emergency communication and sensing equipment based on PSO-BP[J]. Systems Engineering and Electronics, 2022, 44(11): 3455-3462.
表4
温度传感器指标评分情况"
序号 | 测量量程 | 精度 | 稳定性能 | 功耗 | 重量 | 材质 | 防护等级 | 评分 |
1 | 4 | 3 | 3 | 8 | 4 | 4 | 4 | 4.15 |
2 | 4 | 4 | 4 | 7 | 5 | 2 | 4 | 4.16 |
3 | 4 | 4 | 4 | 7 | 5 | 3 | 4 | 4.25 |
4 | 5 | 4 | 4 | 6 | 6 | 2 | 4 | 4.40 |
5 | 4 | 4 | 4 | 8 | 4 | 2 | 5 | 4.44 |
6 | 6 | 4 | 3 | 5 | 7 | 2 | 4 | 4.46 |
7 | 5 | 4 | 4 | 7 | 6 | 2 | 4 | 4.50 |
8 | 6 | 4 | 4 | 6 | 5 | 2 | 4 | 4.66 |
9 | 4 | 4 | 4 | 9 | 6 | 3 | 5 | 4.71 |
10 | 5 | 4 | 3 | 10 | 8 | 4 | 4 | 4.88 |
11 | 5 | 4 | 6 | 2 | 5 | 2 | 8 | 5.20 |
12 | 6 | 5 | 5 | 4 | 3 | 4 | 7 | 5.47 |
13 | 6 | 5 | 6 | 4 | 4 | 4 | 7 | 5.69 |
14 | 6 | 6 | 5 | 4 | 4 | 6 | 7 | 5.76 |
15 | 6 | 6 | 6 | 4 | 4 | 6 | 7 | 5.94 |
16 | 8 | 6 | 5 | 5 | 2 | 4 | 6 | 5.98 |
17 | 7 | 6 | 6 | 4 | 3 | 3 | 8 | 6.15 |
18 | 6 | 5 | 7 | 3 | 5 | 5 | 9 | 6.34 |
19 | 7 | 7 | 5 | 5 | 5 | 7 | 8 | 6.58 |
20 | 8 | 7 | 6 | 4 | 3 | 7 | 7 | 6.66 |
21 | 8 | 7 | 7 | 4 | 4 | 6 | 8 | 7.01 |
22 | 8 | 8 | 8 | 3 | 3 | 6 | 8 | 7.12 |
23 | 7 | 9 | 9 | 4 | 4 | 8 | 7 | 7.17 |
24 | 9 | 7 | 7 | 3 | 3 | 4 | 9 | 7.21 |
25 | 8 | 8 | 8 | 4 | 4 | 7 | 8 | 7.35 |
26 | 9 | 7 | 7 | 4 | 4 | 7 | 9 | 7.62 |
27 | 9 | 8 | 8 | 3 | 3 | 6 | 9 | 7.64 |
28 | 8 | 9 | 9 | 4 | 4 | 9 | 8 | 7.78 |
29 | 9 | 8 | 8 | 4 | 5 | 6 | 9 | 7.82 |
30 | 9 | 8 | 8 | 5 | 4 | 7 | 9 | 7.97 |
1 |
周玉臣, 林圣琳, 马萍, 等. 武器装备效能评估研究进展[J]. 系统仿真学报, 2020, 32 (8): 1413- 1424.
doi: 10.16182/j.issn1004731x.joss.20-0442 |
ZHOU Y C , LING S L , MA P , et al. Research progress of weapon equipment effectiveness evaluation[J]. Journal of System Simulation, 2020, 32 (8): 1413- 1424.
doi: 10.16182/j.issn1004731x.joss.20-0442 |
|
2 |
CUI X Y , LU F , HE Y F , et al. Two-dimensional evaluation model of electrical equipment based on combined weighting and rating algorithm[J]. Energy Reports, 2021, 7, 443- 448.
doi: 10.1016/j.egyr.2021.01.048 |
3 |
CHEN B , LI X H , LIU H W , et al. Hybrid subjective and objective evaluation method of the equipment for first class distribution network[J]. Energy Procedia, 2019, 158, 3452- 3457.
doi: 10.1016/j.egypro.2019.01.928 |
4 | 郝亮亮, 张金生, 李婷, 等. 导弹武器模拟训练考评系统设计[J]. 系统工程与电子技术, 2020, 42 (4): 843- 850. |
HAO L L , ZHANG J S , LI T , et al. Design of evaluation system for missile simulation training[J]. Systems Engineering and Electronics, 2020, 42 (4): 843- 850. | |
5 |
HUANG Z A , ZHAO W , ZHANG Y H , et al. Comprehensive safety evaluation of emergency training for building ruins scenario based on analytic hierarchy process-grey fuzzy evaluation[J]. IEEE Access, 2020, 8, 147776- 147789.
doi: 10.1109/ACCESS.2020.3015829 |
6 | GU Y L, XIE J J, LIU H J, et al. Evaluation and analysis of comprehensive performance of a brake pedal based on an improved analytic hierarchy process[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(5): 095440702098773. |
7 |
NGUYEN T T M , NGUYEN H T T , DOAN T , et al. Application analytic hierarchical process (AHP) in setting up local community urban environmental quality of life index in a developed metropolitan area in Ho Chi Minh City, Vietnam[J]. Current Urban Studies, 2021, 9 (3): 376- 391.
doi: 10.4236/cus.2021.93023 |
8 | WANG Y , LI Y , LIU W , et al. Assessing operational ocean observing equipment (OOOE) based on the fuzzy comprehensive evaluation method[J]. Ocean Engineering, 2015, 107 (10): 54- 59. |
9 | 胡利平, 刘锦帆, 王洪叶, 等. 基于模糊综合评判的车辆目标SAR仿真图像评估方法[J]. 系统工程与电子技术, 2019, 41 (3): 534- 540. |
HU L P , LIU J F , WANG H Y , et al. Vehicle SAR simulation images validation method based on fuzzy comprehensive evaluation[J]. Systems Engineering and Electronics, 2019, 41 (3): 534- 540. | |
10 |
YOU G D , XU B , SU H L , et al. Evaluation of aquaculture water quality based on improved fuzzy comprehensive evaluation method[J]. Water, 2021, 13 (8): 1019.
doi: 10.3390/w13081019 |
11 | ZHOU Z J , CHEN L Y , HAN X X , et al. An interval evidential reasoning-based dynamic performance evaluation method for complex systems[J]. Computers & Industrial Engineering, 2021, 162, 107735. |
12 | WANG R , FENG Y . Evaluation research on green degree of equipment manufacturing industry based on improved particle swarm optimization algorithm[J]. Chaos, Solitons & Fractals, 2020, 131, 109502. |
13 |
XU R , QIN Q Q , SUN T , et al. Comprehensive evaluation model for resettlement site selection in karst areas using multiobjective particle swarm optimization[J]. IEEE Access, 2021, 9, 113759- 113769.
doi: 10.1109/ACCESS.2021.3101636 |
14 | KAMRUZZAMAN M , BHUSAL N , BENIDRIS M . A convolutional neural network-based approach to composite power system reliability evaluation[J]. International Journal of Electrical Power & Energy Systems, 2021, 135 (4): 107468. |
15 | ZHENG X Y, HU P, GAO J N. Application of BP neural network in fire risk assessment of comprehensive shopping mall[C]//Proc. of the International Conference on Intelligent Computing, Automation and Systems, 2019. |
16 | 程磊, 赵昊, 耿剑统, 等. 基于BP神经网络的矿井热环境评价体系研究[J]. 中国矿业, 2020, 29 (4): 152- 156. |
CHENG L , ZHAO H , GENG J T . Research on mine thermal environment evaluation system based on BP neural network[J]. China Mining Magazine, 2020, 29 (4): 152- 156. | |
17 | HOU H, MENG H. Evaluation of material suppliers based on BP neural network under the background of big data[C]//Proc. of the Management Science Informatization and Economic Innovation Development Conference, 2020: 12-16. |
18 | WANG L , BI X H . Risk assessment of knowledge fusion in an innovation ecosystem based on a GA-BP neural network[J]. Cognitive Systems Research, 2021, 66, 201- 210. |
19 | LIM J Y, KIM T W, WANG X Y, et al. Evaluation of compressive strength of sustainable concrete using genetic algorithm assisted artificial neural networks[C]//Proc. of the Materials Science Forum, 2021. |
20 | LUO Y Y , REN D . Influence of the enterprise's intelligent performance evaluation model using neural network and genetic algorithm on the performance compensation of the merger and acquisition parties in the commitment period[J]. Plos One, 2021, 16 (3): e0248727. |
21 | 何华锋, 何耀民, 徐永壮. 基于改进型BP神经网络的导引头测高性能评估[J]. 系统工程与电子技术, 2019, 41 (7): 1544- 1550. |
HE H F , HE Y M , XU Y Z . High performance evaluation of seeker measurement based on improved BP neural network[J]. Systems Engineering and Electronics, 2019, 41 (7): 1544- 1550. | |
22 | FENG J Y , YUAN B Y , LI X , et al. Evaluation on risks of sustainable supply chain based on optimized BP neural networks in fresh grape industry[J]. Computers and Electronics in Agriculture, 2021, 183, 105988. |
23 | CHENG X L. Research on fuzzy comprehensive evaluation model of clothing brand based on neural network and data envelopment analysis[C]//Proc. of the 12th International Conference on Measuring Technology and Mechatronics Automation, 2020. |
24 | ZHANG M C . Prediction of rockburst hazard based on particle swarm algorithm and neural network[J]. Neural Computing and Applications, 2022, 34 (4): 2649- 2659. |
25 | VIET D T , PHUONG V V , DUONG M Q , et al. Models for short-term wind power forecasting based on improved artificial neural network using particle swarm optimization and genetic algorithms[J]. Energies, 2020, 13 (11): 2873. |
26 | ALCANTARA G M R N , DRESCH D , MELCHERT W R , et al. Use of non-volatile compounds for the classification of specialty and traditional Brazilian coffees using principal component analysis[J]. Food Chemistry, 2021, 360, 130088. |
27 | 冯建鑫, 王雅雷, 王强, 等. 基于改进粒子群算法的快速反射镜自抗扰控制[J]. 系统工程与电子技术, 2021, 43 (12): 3675- 3682. |
FENG J X , WANG Y L , WANG Q , et al. Fast steering mirror ADRC based on improved particle swarm optimizer[J]. Systems Engineering and Electronics, 2021, 43 (12): 3675- 3682. | |
28 | 魏科宇. 基于改进粒子群算法的城市供水系统优化研究[D]. 重庆: 重庆大学, 2020. |
WEI K Y. A research on the optimization of municipal water distribution systems based on improve particle swarm method[D]. Chongqing: Chongqing University, 2020. | |
29 | EBERHART R C, SHI Y H. Particle swarm optimization: development, applications and resources[C]//Proc. of the Congress on Evolutionary Computation, 2001. |
30 | 王生亮, 刘根友. 一种非线性动态自适应惯性权重PSO算法[J]. 计算机仿真, 2021, 38 (4): 249- 253.249-253, 451 |
WANG S L , LIU G Y . A nonlinear dynamic adaptive inertial weight PSO algorithm[J]. Computer Simulation, 2021, 38 (4): 249- 253.249-253, 451 | |
31 | LU H J , ZOU N , JACOBS R , et al. Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion[J]. Computational Materials Science, 2019, 169, 109075. |
[1] | 田鹤, 董纯柱, 殷红成. 基于频域稀疏压缩感知的雷达目标三维散射中心反演方法[J]. 系统工程与电子技术, 2022, 44(9): 2783-2790. |
[2] | 杨建峰, 肖和业, 李亮, 白俊强, 董维浩. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
[3] | 李君龙, 李松洲, 周荻. 一种多约束条件下的三脉冲交会优化设计方法[J]. 系统工程与电子技术, 2022, 44(8): 2612-2620. |
[4] | 闫世瑛, 颜克斐, 方伟, 陆恒杨. 基于差分进化邻域自适应的大规模多目标算法[J]. 系统工程与电子技术, 2022, 44(7): 2112-2124. |
[5] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[6] | 杜思予, 全英汇, 沙明辉, 方文, 邢孟道. 基于进化PSO算法的稀疏捷变频雷达波形优化[J]. 系统工程与电子技术, 2022, 44(3): 834-840. |
[7] | 路复宇, 童宁宁, 冯为可, 万鹏程. 自适应杂交退火粒子群优化算法[J]. 系统工程与电子技术, 2022, 44(11): 3470-3476. |
[8] | 李浩洋, 向建军, 彭芳, 王帅, 李志军. 基于粒子群优化的波束空间广义旁瓣相消算法[J]. 系统工程与电子技术, 2022, 44(10): 3037-3045. |
[9] | 郭璐, 刘晓东, 魏东涛, 朱璞. 基于改进PCA的导弹装备健康表征参数提取方法[J]. 系统工程与电子技术, 2022, 44(10): 3275-3281. |
[10] | 苏瑜, 荆文芳, 卢晓春, 张阳. 基于BP-PID控制的载波频率准确度提高算法[J]. 系统工程与电子技术, 2021, 43(7): 1894-1903. |
[11] | 谢磊, 丁达理, 魏政磊, 汤安迪, 张鹏. AdaBoost-PSO-LSTM网络实时预测机动轨迹[J]. 系统工程与电子技术, 2021, 43(6): 1651-1658. |
[12] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. |
[13] | 孙云柯, 方志耕, 陈顶. 基于动态灰色主成分分析的多时刻威胁评估[J]. 系统工程与电子技术, 2021, 43(3): 740-746. |
[14] | 王坤, 侯树贤, 王力. 基于自适应变异PSO-SVM的APU性能参数预测模型[J]. 系统工程与电子技术, 2021, 43(2): 526-536. |
[15] | 赵帅, 刘松涛, 汪慧阳. 基于PSO-CNN的LPI雷达波形识别算法[J]. 系统工程与电子技术, 2021, 43(12): 3552-3563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||