系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3423-3432.doi: 10.12305/j.issn.1001-506X.2022.11.17
邓嘉宁1, 吴宇1, 许舒婷2,*, 苟进展1
收稿日期:
2021-11-09
出版日期:
2022-10-26
发布日期:
2022-10-29
通讯作者:
许舒婷
作者简介:
邓嘉宁(1996—), 男, 硕士研究生, 主要研究方向为复杂系统分析、飞行器控制与导航、神经网络|吴宇(1987—), 男, 副教授, 博士, 主要研究方向为飞行器动力学建模与轨迹优化、多飞行器(智能体)协同控制、多智能体任务规划、调度与决策、优化算法研究|许舒婷(1992—), 女, 博士后, 主要研究方向为人机多智能体建模与仿真、人机多智能体协同控制、人机系统与飞行品质、人机系统综合评价|苟进展(1997—), 男, 硕士研究生, 主要研究方向为无人机协同制导与控制
基金资助:
Jianing DENG1, Yu WU1, Shuting XU2,*, Jinzhan GOU1
Received:
2021-11-09
Online:
2022-10-26
Published:
2022-10-29
Contact:
Shuting XU
摘要:
航空母舰作为一个典型的复杂系统, 舰载机的出动回收效率是衡量整个系统作战能力的重要指标。描述出动回收效率的指标众多, 且指标之间关系复杂。为确定指标之间的相互关系, 避免在评判过程中主观性判断产生的缺陷, 提出了基于三角模糊数的扩展贝叶斯融合法评估舰载机的出动回收效率。针对网络层次分析法(analytic network process, ANP)分析过程中的主观性判断, 采用基于三角模糊数的尺度标准, 并结合历史实验数据和专家评判进行综合分析。仿真算例中, 通过多组对比实验分析, 验证了所提方法中采用模糊数以及融合专家经验和历史实验数据的合理性与有效性。
中图分类号:
邓嘉宁, 吴宇, 许舒婷, 苟进展. 基于模糊贝叶斯-ANP舰载机出动回收综合评估[J]. 系统工程与电子技术, 2022, 44(11): 3423-3432.
Jianing DENG, Yu WU, Shuting XU, Jinzhan GOU. Comprehensive evaluation of carrier aircraft's dispatch and recovery based on fuzzy Bayesian-ANP[J]. Systems Engineering and Electronics, 2022, 44(11): 3423-3432.
表2
基于三角模糊数的ANP评判标度"
含义 | 标度 | 1/标度 |
两个指标相比同样重要 | L1 (1, 1, 1) | V1 (1, 1, 1) |
相邻判断的中间值 | L2 (1, 2, 3) | V2 (1/3, 1/2, 1) |
两个指标相比前者稍微重要 | L3 (2, 3, 4) | V3 (1/4, 1/3, 1/2) |
相邻判断的中间值 | L4 (3, 4, 5) | V4 (1/5, 1/4, 1/3) |
两个指标相比前者明显重要 | L5 (4, 5, 6) | V5 (1/6, 1/5, 1/4) |
相邻判断的中间值 | L6 (5, 6, 7) | V6 (1/7, 1/6, 1/5) |
两个指标相比前者强烈重要 | L7 (6, 7, 8) | V7 (1/8, 1/7, 1/6) |
相邻判断的中间值 | L8 (7, 8, 9) | V8 (1/9, 1/8, 1/7) |
两个指标相比前者极端重要 | L9 (9, 9, 9) | V9 (1/9, 1/9, 1/9) |
表4
扩展后的子系统层指标之间权重超矩阵Z25×25"
指标集 | 指标 | 1 | 2 | … | 7 | ||||||
11 | 12 | 13 | 14 | 21 | 22 | 23 | 73 | ||||
1 | 11 | 0.072 7 | 0.072 7 | 0.072 7 | 0.072 7 | 0.078 1 | 0.078 1 | 0.078 1 | … | 0.076 8 | |
12 | 0.072 7 | 0.072 7 | 0.072 7 | 0.072 7 | 0.078 1 | 0.078 1 | 0.078 1 | 0.076 8 | |||
13 | 0.072 7 | 0.072 7 | 0.072 7 | 0.072 7 | 0.078 1 | 0.078 1 | 0.078 1 | 0.076 8 | |||
14 | 0.072 7 | 0.072 7 | 0.072 7 | 0.072 7 | 0.078 1 | 0.078 1 | 0.078 1 | 0.076 8 | |||
2 | 21 | 0.115 8 | 0.115 8 | 0.115 8 | 0.115 8 | 0.282 4 | 0.282 4 | 0.282 4 | … | 0.282 3 | |
22 | 0.115 8 | 0.115 8 | 0.115 8 | 0.115 8 | 0.282 4 | 0.282 4 | 0.282 4 | 0.282 3 | |||
23 | 0.115 8 | 0.115 8 | 0.115 8 | 0.115 8 | 0.282 4 | 0.282 4 | 0.282 4 | 0.282 3 | |||
| | ||||||||||
7 | 73 | 0.090 5 | 0.090 5 | 0.090 5 | 0.090 5 | 0.085 7 | 0.085 7 | 0.085 7 | … | 0.081 2 |
表6
舰载机出动回收能力评价体系指标权重排序(融合历史实验数据与否)"
指标号 | 指标 | 权重1 | 排序1 | 子系统层1 | 子系统层排序1 | 权重2 | 排序2 | 子层系2统 | 子排系序统2层 |
11 | 飞行甲板停机区面积 | 0.028 2 | 11 | 0.078 | 7 | 0.027 6 | 11 | 0.078 | 7 |
12 | 机库甲板停机区面积 | 0.012 4 | 19 | 0.013 4 | 19 | ||||
13 | 舰载机尺寸 | 0.010 4 | 20 | 0.010 3 | 20 | ||||
14 | 舰载机可用度 | 0.026 8 | 12 | 0.026 5 | 12 | ||||
21 | 起飞位数量 | 0.104 8 | 3 | 0.253 | 1 | 0.110 9 | 2 | 0.254 | 1 |
22 | 起飞循环工作周期 | 0.034 4 | 10 | 0.037 0 | 10 | ||||
23 | 波次最大出动能力 | 0.114 0 | 2 | 0.105 9 | 3 | ||||
31 | 波次最大回收舰载机数量 | 0.064 3 | 5 | 0.094 | 6 | 0.062 9 | 5 | 0.092 | 6 |
32 | 回收间隔时间 | 0.008 2 | 21 | 0.008 4 | 21 | ||||
33 | 拦阻装置的工作周期 | 0.015 5 | 18 | 0.015 0 | 18 | ||||
34 | 复飞率 | 0.005 8 | 23 | 0.005 4 | 24 | ||||
41 | 指挥舰载机最大数量 | 0.018 6 | 17 | 0.244 | 2 | 0.019 2 | 17 | 0.245 | 2 |
42 | 保障计划决策时间 | 0.057 0 | 7 | 0.058 7 | 7 | ||||
43 | 应急状态调度反应时间 | 0.145 7 | 1 | 0.141 4 | 1 | ||||
44 | 保障监控信息覆盖率 | 0.022 6 | 15 | 0.025 4 | 15 | ||||
51 | 波次最大保障数量 | 0.070 8 | 4 | 0.173 | 3 | 0.068 1 | 4 | 0.173 | 3 |
52 | 油电气液供给保障能力 | 0.026 7 | 13 | 0.025 9 | 13 | ||||
53 | 保障设备数量 | 0.053 8 | 8 | 0.056 7 | 8 | ||||
54 | 保障工作周期 | 0.021 5 | 16 | 0.022 4 | 16 | ||||
61 | 平均修复性维修时间 | 0.053 2 | 9 | 0.124 | 4 | 0.053 9 | 9 | 0.124 | 4 |
62 | 设备备件配套率 | 0.063 2 | 6 | 0.062 2 | 6 | ||||
63 | 可完成维修项目比率 | 0.007 2 | 22 | 0.007 5 | 22 | ||||
71 | 人员数量 | 0.025 6 | 14 | 0.035 | 5 | 0.025 5 | 14 | 0.035 | 5 |
72 | 人员疲劳程度 | 0.005 2 | 24 | 0.005 4 | 23 | ||||
73 | 人员健康状况 | 0.004 0 | 25 | 0.004 4 | 25 |
表7
舰载机出动回收能力评价体系指标权重排序(模糊ANP与经典ANP)"
指标号 | 指标 | 权重3 | 排序3 | 子系统层3 | 子系统层排序3 | 权重4 | 排序4 | 子层系4统 | 子排系序统4层 |
11 | 飞行甲板停机区面积 | 0.028 2 | 11 | 0.078 | 7 | 0.027 4 | 12 | 0.078 | 7 |
12 | 机库甲板停机区面积 | 0.012 4 | 19 | 0.012 2 | 19 | ||||
13 | 舰载机尺寸 | 0.010 4 | 20 | 0.010 8 | 20 | ||||
14 | 舰载机可用度 | 0.026 8 | 12 | 0.027 7 | 11 | ||||
21 | 起飞位数量 | 0.104 8 | 3 | 0.253 | 1 | 0.103 6 | 3 | 0.253 | 1 |
22 | 起飞循环工作周期 | 0.034 4 | 10 | 0.033 1 | 10 | ||||
23 | 波次最大出动能力 | 0.114 0 | 2 | 0.116 6 | 2 | ||||
31 | 波次最大回收舰载机数量 | 0.064 3 | 5 | 0.094 | 6 | 0.063 9 | 6 | 0.094 | 6 |
32 | 回收间隔时间 | 0.008 2 | 21 | 0.008 3 | 21 | ||||
33 | 拦阻装置的工作周期 | 0.015 5 | 18 | 0.015 6 | 18 | ||||
34 | 复飞率 | 0.005 8 | 23 | 0.006 1 | 23 | ||||
41 | 指挥舰载机最大数量 | 0.018 6 | 17 | 0.244 | 2 | 0.018 0 | 17 | 0.244 | 2 |
42 | 保障计划决策时间 | 0.057 0 | 7 | 0.056 3 | 7 | ||||
43 | 应急状态调度反应时间 | 0.145 7 | 1 | 0.145 8 | 1 | ||||
44 | 保障监控信息覆盖率 | 0.022 6 | 15 | 0.023 7 | 15 | ||||
51 | 波次最大保障数量 | 0.070 8 | 4 | 0.173 | 3 | 0.070 5 | 4 | 0.173 | 3 |
52 | 油电气液供给保障能力 | 0.026 7 | 13 | 0.026 7 | 13 | ||||
53 | 保障设备数量 | 0.053 8 | 8 | 0.053 6 | 8 | ||||
54 | 保障工作周期 | 0.021 5 | 16 | 0.022 1 | 16 | ||||
61 | 平均修复性维修时间 | 0.053 2 | 9 | 0.124 | 4 | 0.052 2 | 9 | 0.123 | 4 |
62 | 设备备件配套率 | 0.063 2 | 6 | 0.064 1 | 5 | ||||
63 | 可完成维修项目比率 | 0.007 2 | 22 | 0.007 2 | 22 | ||||
71 | 人员数量 | 0.025 6 | 14 | 0.035 | 5 | 0.025 1 | 14 | 0.035 | 5 |
72 | 人员疲劳程度 | 0.005 2 | 24 | 0.005 3 | 24 | ||||
73 | 人员健康状况 | 0.004 0 | 25 | 0.004 2 | 25 |
1 | 伍赛特. 航空母舰舰载机技术发展趋势研究[J]. 现代制造技术与装备, 2020, 4, 8- 11. |
WU S T . Research on the development trend of aircraft carrier technology[J]. Modern Manufacturing Technology and Equipment, 2020, 4, 8- 11. | |
2 |
DIETZ D C , JENKINS R C . Analysis of aircraft sortie generation with the use of a fork-join queueing network model[J]. Naval Research Logistics, 1997, 44 (2): 153- 164.
doi: 10.1002/(SICI)1520-6750(199703)44:2<153::AID-NAV1>3.0.CO;2-8 |
3 |
MACKENZIE A , MILLER J O , HILL R R , et al. Application of agent based modelling to aircraft maintenance manning and sortie generation[J]. Simulation Modelling Practice and Theory, 2012, 20 (1): 89- 98.
doi: 10.1016/j.simpat.2011.09.001 |
4 | XIA G P , LUAN T T , SUN M X . Evaluation analysis for sortie generation of carrier aircrafts based on nonlinear fuzzy matter-element method[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31 (6): 3055- 3066. |
5 |
WANG X W , LIU J , SU X C , et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3039- 3057.
doi: 10.1016/j.cja.2020.06.020 |
6 | WU Y, TAN W Q, SUN L G, et al. A decision-making method for landing routes of aircraft on the carrier[C]//Proc. of the MATEC Web of Conferences, 2016, 75: 05002. |
7 |
WU Y , QU X J . Path planning for taxi of carrier aircraft launching[J]. Science China Technological Sciences, 2013, 56 (6): 1561- 1570.
doi: 10.1007/s11431-013-5222-5 |
8 | SEBOK A , WICKENS C , SARTER N , et al. The automation design advisor tool (ADAT): development and validation of a model-based tool to support flight deck automation design for nextgen operations[J]. Human Factors and Ergonomics in Ma-nufacturing & Service Industries, 2012, 22 (5): 378- 394. |
9 |
万兵, 韩维, 梁勇, 等. 基于指标函数的舰载机机队回收调度优化研究[J]. 系统工程与电子技术, 2021, 43 (10): 2918- 2930.
doi: 10.12305/j.issn.1001-506X.2021.10.27 |
WAN B , HAN W , LIANG Y , et al. Research on optimization of carrier-based aircraft fleet recovery scheduling based on index function[J]. Systems Engineering and Electronics, 2021, 43 (10): 2918- 2930.
doi: 10.12305/j.issn.1001-506X.2021.10.27 |
|
10 | SU X C, LI H, ZHANG Y R, et al. Research on landing environment system of carrier-based aircraft[C]//Proc. of the Chinese Control and Decision Conference, 2019: 2747-2750. |
11 |
刘相春, 卢晶, 黄祥钊. 国外航母舰载机出动回收能力指标体系分析[J]. 中国舰船研究, 2011, 6 (4): 1- 7.
doi: 10.3969/j.issn.1673-3185.2011.04.001 |
LIU X C , LU J , HUANG X Z . Analysis on the index system of sortie generation capacity of embarked aircrafts[J]. Chinese Journal of Ship Research, 2011, 6 (4): 1- 7.
doi: 10.3969/j.issn.1673-3185.2011.04.001 |
|
12 |
韩维, 李正阳, 苏析超. 基于改进ANP和可拓理论的航空保障系统效能评估[J]. 兵器装备工程学报, 2019, 40 (8): 100- 105.
doi: 10.11809/bqzbgcxb2019.08.021 |
HAN W , LI Z Y , SU X C . Effectiveness evaluation of carrier aviation support system based on improved ANP and extension theory[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (8): 100- 105.
doi: 10.11809/bqzbgcxb2019.08.021 |
|
13 | 陈小飞, 时立攀, 毕玉泉. 美军航母舰载机出动回收能力和飞行甲板控制策略探讨[J]. 舰船科学技术, 2020, 42 (21): 174- 179. |
CHEN X F , SHI L P , BI Y Q . A discussion on the sortie generation capacity of embarked airwings and the doctrine of flight deck control of U.S. aircraft carrier[J]. Ship Science and Technology, 2020, 42 (21): 174- 179. | |
14 |
LIMA J F R , OSIRO L , CARPINETTI L C R . A comparison between fuzzy AHP and fuzzy TOPSIS methods to supplier selection[J]. Applied Soft Computing, 2014, 21, 194- 209.
doi: 10.1016/j.asoc.2014.03.014 |
15 | TAVAN A , MADJI D , SOLTANIFA R , et al. Analytical hierarchy process: revolution and evolution[J]. Annals of Operations Research, 2021, 2, 1- 29. |
16 |
XU Z S , LIAO H C . Intuitionistic fuzzy analytic hierarchy process[J]. IEEE Trans.on Fuzzy Systems, 2014, 22 (4): 749- 761.
doi: 10.1109/TFUZZ.2013.2272585 |
17 | CHOL Y W, BOK R J, YON Y J, et al. Materials selection criteria weighting method using analytic hierarchy process (AHP) with simplest questionnaire and modifying method of inconsistent pairwise comparison matrix[J]. Proc. of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236(1): 69-85. |
18 | ISHIZAKA A , LABIB A . Review of the main developments in the analytic hierarchy process[J]. Expert Systems with Applications, 2011, 38 (11): 14336- 14345. |
19 |
KARRAMAN C , ERTAY T , BUYUKOZKAN G . A fuzzy optimization model for QFD planning process using analytic network approach[J]. European Journal of Operational Research, 2006, 171 (2): 390- 411.
doi: 10.1016/j.ejor.2004.09.016 |
20 |
SAATY T L . Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process[J]. RACSAM-Revista de la Real Aca-demia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2008, 102 (2): 251- 318.
doi: 10.1007/BF03191825 |
21 |
LEE J W , KIM S H . Using analytic network process and goal programming for interdependent information system project selection[J]. Computers & Operations Research, 2000, 27 (4): 367- 382.
doi: 10.3969/j.issn.1001-4160.2000.04.018 |
22 | 王莲芬. 网络分析法(ANP)的理论与算法[J]. 系统工程理论与实践, 2001, 21 (3): 44- 50. |
WANG L F . The theory and algorithm of analytic network process (ANP)[J]. Systems Engineering-Theory & Practice, 2001, 21 (3): 44- 50. | |
23 | MARZIEH M , REZA P H , JAFAR M M . A multi-criteria GIS-based model for wind farm site selection with the least impact on environmental pollution using the OWA-ANP method[J]. Environmental Science and Pollution Research International, 2022, 29, 43891- 43912. |
24 | WENJUN Z , TAOTAO L , YAO L . Risk assessment of water supply network operation based on ANP-fuzzy comprehensive evaluation method[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13 (1): 04021068. |
25 | MISTARIHI M Z , OKOUR R A , MUMANI A A . An integration of a QFD model with fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design[J]. Applied Soft Computing, 2020, 90, 106136. |
26 | ZHANG F , JU Y B , GONZALEZ E D R S , et al. Evaluation of construction and demolition waste utilization schemes under uncertain environment: a fuzzy heterogeneous multi-criteria decision-making approach[J]. Journal of Cleaner Production, 2021, 313, 127907. |
27 | PANG N S , NAN M F , MENG Q C , et al. Selection of wind turbine based on fuzzy analytic network process: a case study in China[J]. Sustainability, 2021, 13 (4): 1792. |
28 | DONG J , LIU D R , LIU Y , et al. Trading performance evaluation for traditional power generation group based on an integrated matter-element extension cloud model[J]. Energy Reports, 2021, 7, 3074- 3089. |
29 | HOU Z Q , ZHAO P . Based on fuzzy Bayesian network of oil wharf handling risk assessment[J]. Mathematical Problems in Engineering, 2016, 2016, 6532691. |
30 | CHEMWENO P , PINTELON L , VAN HORENBEEK A , et al. Development of a risk assessment selection methodology for asset maintenance decision making: an analytic network process (ANP) approach[J]. International Journal of Production Economics, 2015, 170, 663- 676. |
31 | SAATY T L , ZHANG L . The need for adding judgment in Bayesian prediction[J]. International Journal of Information Technology & Decision Making, 2016, 15 (4): 733- 761. |
32 | 石福丽, 方志刚, 杨峰, 等. 基于仿真的潜艇装备作战能力ANP幂指数评估方法[J]. 国防科技大学学报, 2011, 33 (4): 168- 174. |
SHI F L , FANG Z G , YANG F , et al. ANP power index evaluation method for operational capability of submarine equipment based on simulation[J]. Journal of National University of Defense Technology, 2011, 33 (4): 168- 174. | |
33 | CHEN C J . Extensions of the TOPSIS for group decision-making under fuzzy environment[J]. Fuzzy Sets and Systems, 2000, 114 (1): 1- 9. |
34 | CHU T C , LIN Y C . Improved extensions of the TOPSIS for group decisionmaking under fuzzy environment[J]. Journal of Information and Optimization Sciences, 2013, 23 (2): 273- 286. |
[1] | 江登英, 张徐军. 基于TFNCD算子的三角模糊数多属性群决策[J]. 系统工程与电子技术, 2019, 41(9): 2065-2071. |
[2] | 谭旭, 吴俊江, 毛太田, 谭跃进. 基于三角模糊数犹豫直觉模糊集的多属性智能决策[J]. 系统工程与电子技术, 2017, 39(4): 829-836. |
[3] | 黄智力, 罗键. 三角模糊数型不确定多指标决策的相似规划模型及其应用[J]. 系统工程与电子技术, 2016, 38(5): 1100-. |
[4] | 马德仲,周真,于晓洋,樊尚春,邢维巍,郭占社. 基于模糊概率的多状态贝叶斯网络可靠性分析[J]. Journal of Systems Engineering and Electronics, 2012, 34(12): 2607-2611. |
[5] | 孙世权, 高淑萍, 梁原, 边疆. 基于数据融合技术的多属性群决策方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2094-2097. |
[6] | 张肃, 程启月, 王颖龙. 防空导弹混编群协同效能评估[J]. Journal of Systems Engineering and Electronics, 2009, 31(8): 1923-1926. |
[7] | 吴诗辉, 杨建军, 郭乃林. 三角模糊矩阵博弈的最优策略研究[J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1231-1234. |
[8] | 卫贵武. FOWHA算子及其在决策中的应用[J]. Journal of Systems Engineering and Electronics, 2009, 31(4): 855-858. |
[9] | 汪新凡, 杨小娟. 基于FV-OWA算子的不确定多属性决策方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(2): 380-383. |
[10] | 刘秀梅, 赵克勤, 王传斌. 基于联系数的三角模糊数多属性决策新模型[J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2399-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||