系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3313-3319.doi: 10.12305/j.issn.1001-506X.2022.11.04
权双龙*, 王昊, 徐达龙, 井家明, 朱硕
收稿日期:
2021-07-15
出版日期:
2022-10-26
发布日期:
2022-10-29
通讯作者:
权双龙
作者简介:
权双龙 (1991—), 男, 博士研究生, 主要研究方向为相控天线阵列、雷达系统|王昊 (1980—), 男, 副研究员, 博士, 主要研究方向为雷达系统、天线阵列、信号处理|徐达龙 (1987—), 男, 博士研究生, 主要研究方向为雷达系统与信号处理|井家明 (1997—), 男, 硕士研究生, 主要研究方向为相控天线阵列|朱硕 (1998—), 男, 硕士研究生, 主要研究方向为微带天线、阵列天线
Shuanglong QUAN*, Hao WANG, Dalong XU, Jiaming JING, Shuo ZHU
Received:
2021-07-15
Online:
2022-10-26
Published:
2022-10-29
Contact:
Shuanglong QUAN
摘要:
针对连续波干涉仪系统中对收发天线的布阵要求及高隔离度要求, 设计了一款工作于X波段的串馈形式的微带天线阵列, 并将其排布成1发5收形式的收发天线阵列。基于干涉仪原理, 通过长短基线结合方式兼顾宽范围测向不模糊和高精度测角。同时, 通过天线布局优化法、阻挡法、铺设吸波材料法等, 将收发隔离度由52 dB提升至79 dB。所提出的高隔离度收发天线阵列在连续波干涉仪系统中具有良好的应用前景, 所采用提高隔离度方式在优化收发天线隔离度时具有一定的推广性。
中图分类号:
权双龙, 王昊, 徐达龙, 井家明, 朱硕. 基于连续波干涉仪系统的高隔离度天线[J]. 系统工程与电子技术, 2022, 44(11): 3313-3319.
Shuanglong QUAN, Hao WANG, Dalong XU, Jiaming JING, Shuo ZHU. High isolation antenna based on continuous wave interferometer system[J]. Systems Engineering and Electronics, 2022, 44(11): 3313-3319.
1 |
YU C Y , YANG S H , CHEN Y C , et al. A super-wideband and high isolation MIMO antenna system using a Windmill-shaped decoupling structure[J]. IEEE Access, 2020, 8, 115767- 115777.
doi: 10.1109/ACCESS.2020.3004396 |
2 | JIAO T Q, JIANG T, LI Y S. A low mutual coupling antenna array using alternating-direction S-shaped defected ground[C]//Proc. of the IEEE 5th Asia-Pacific Conference on Antennas and Propagation, 2016: 431-432. |
3 | HAMMOODI A I, RAAD H, MILANOVA M. Mutual coupling reduction between two circular patches using H-shape DGS[C]//Proc. of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 1371-1372. |
4 | QIANG J X, XU F, FAN W J. Reducing mutual coupling of millimeter wave array antennas by fractal defected ground structure[C]//Proc. of the IEEE 12th International Symposium on Antennas, Propagation and EM Theory, 2018. |
5 |
KHAN A , BASHIR S , GHAFOOR S , et al. Mutual coupling reduction using ground stub and EBG in a compact wideband MIMO antenna[J]. IEEE Access, 2021, 9, 40972- 40979.
doi: 10.1109/ACCESS.2021.3065441 |
6 | SAXENA G, PRAJAPATI V, GUPTA V, et al. High isolation with mushrom shaped EBG super wide band MIMO antenna[C]//Proc. of the IEEE International Conference on Advance and Innovative Technologies in Engineering, 2021: 920-926. |
7 | SAXENAL G, JAIN P, AWASTHI Y K. High isolation EBG based MIMO antenna for X band applications[C]//Proc. of the IEEE 6th International Conference on Signal Processing and Integrated Networks, 2019: 97-100. |
8 | 韩壮志, 吴玉柱, 梁梦涛, 等. 连续波雷达微带天线收发隔离技术综述[J]. 电子元件与材料, 2020, 39 (10): 17- 21. |
HAN Z Z , WU Y Z , LIANG M T , et al. Summarization of CW radar microstrip antenna transceiver isolation technology[J]. Electronic Components & Materials, 2020, 39 (10): 17- 21. | |
9 | WAHAB M, SAPUTERA Y P, WAHYUISOLATION Y. Improvement for X-band FMCW radar transmit and receive antennas[C]//Proc. of the IEEE International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, 2016. |
10 | HAFEZIFARD R , NASER-MOGHADASI M , RASHED J , et al. Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 40- 43. |
11 |
CHENG Y F , DING X , SHAO W , et al. Reduction of mutual coupling between patch antennas using a polarization-conversion isolator[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1257- 1260.
doi: 10.1109/LAWP.2016.2631621 |
12 |
DHEVI B , VISHVAKSENAN K S , RAJAKANI K . Isolation enhancement in dual-band microstrip antenna array using asymmetric loop resonator[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (2): 238- 241.
doi: 10.1109/LAWP.2017.2781907 |
13 |
VISHVAKSENAN K S , MITHRA K , KALAIARASAN R , et al. Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2146- 2149.
doi: 10.1109/LAWP.2017.2700521 |
14 |
FARAHANI M , POURAHMADAZAR J , AKBARI M , et al. Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2324- 2327.
doi: 10.1109/LAWP.2017.2717404 |
15 |
DADGARPOUR A , ZARGHOONI B , VIRDEE B S , et al. Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60 GHz MIMO systems[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 477- 480.
doi: 10.1109/LAWP.2016.2585127 |
16 |
KARIMIAN R , KESAVAN A , NEDIL M , et al. Low-mutual-coupling 60 GHz MIMO antenna system with frequency selective surface wall[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 373- 376.
doi: 10.1109/LAWP.2016.2578179 |
17 |
TANG M C , CHEN Z Y , WANG H , et al. Mutual coupling reduction using meta-structures for wideband, dual-polarized, and high-density patch arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 65 (8): 3986- 3998.
doi: 10.1109/TAP.2017.2710214 |
18 |
JAFARGHOLI A , JAFARGHOLI A , CHOI J H . Mutual coupling reduction in an array of patch antennas using CLL metamaterial superstrate for MIMO applications[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (1): 179- 189.
doi: 10.1109/TAP.2018.2874747 |
19 |
YANG F M , PENG L , LIAO X , et al. Coupling reduction for a wideband circularly polarized conformal array antenna with a single-negative structure[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (5): 991- 995.
doi: 10.1109/LAWP.2019.2907134 |
20 |
LUAN H Z , CHEN C , CHEN W D , et al. Mutual coupling reduction of closely E/H-plane coupled antennas through metasurfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (10): 1996- 2000.
doi: 10.1109/LAWP.2019.2936096 |
21 |
GHADIMI A , NAYYERI V , KHANJARIAN M , et al. A systematic approach for mutual coupling reduction between microstrip antennas using pixelization and binary optimization[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (12): 2048- 2052.
doi: 10.1109/LAWP.2020.3022000 |
22 |
WEI K , ZHU B C . The novel W parasitic strip for the circularly polarized microstrip antennas design and the mutual coupling reduction between them[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (2): 804- 813.
doi: 10.1109/TAP.2018.2882617 |
23 | LIN Y, YANG K, GUO M, et al. A high-isolation MIMO array for FMCW radar applications[C]//Proc. of the IEEE MTT-S International Wireless Symposium, 2018. |
24 |
ADELA B B , MARTIJN C , BEURDEN V , et al. High-isolation array antenna integration for single-chip millimeter-wave FMCW radar[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (10): 5214- 5223.
doi: 10.1109/TAP.2018.2854286 |
25 | 周旭, 于嘉嵬. 高隔离度的连续波雷达收发天线系统[J]. 现代雷达, 2019, 41 (7): 68- 70. |
ZHOU X , YU J W . High isolation continuous wave radar transceiver antenna system[J]. Modern Radar, 2019, 41 (7): 68- 70. | |
26 |
DA Y R , ZHANG Z Y , CHEN X M , et al. Mutual coupling reduction with dielectric superstrate for base station arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20 (5): 843- 847.
doi: 10.1109/LAWP.2021.3065392 |
27 | TAYDAS F M, YIGIT H, BOZDAG G, et al. Design of a series feed aperture coupled Ku-band microstrip antenna array for bi-directional satellite communication[C]//Proc. of the 28th Signal Processing and Communications Applications Confe-rence, 2020. |
28 | WANG H S, KEDZE K E, PARK I. Microstrip patch array antenna using a parallel and series combination feed network[C]//Proc. of the International Symposium on Antennas and Propagation, 2018. |
29 | MATHUR P, ARRAWATIA M. High gain series fed planar microstrip antenna array using printed L-probe feed[C]//Proc. of the IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2020. |
30 | 邬江. 不同基线的干涉仪测向误差分析[J]. 电子信息对抗技术, 2020, 35 (5): 16- 19. |
WU J . Analysis of interferometer direction finding error of different baselines[J]. Electronic Information Countermeasure Technology, 2020, 35 (5): 16- 19. | |
31 | 段国文. 干涉仪测向天线布阵与测向精度关系分析[J]. 电子信息对抗技术, 2019, 34 (1): 56- 60. |
DUAN G W . Analysis on the relationship between interferometer direction-finding antenna array and direction finding accuracy[J]. Electronic Information Countermeasure Technology, 2019, 34 (1): 56- 60. | |
32 | LEE J H , KIM J K , RYU H K , et al. Multiple array spacings for an interferometer direction finder with high direction-finding accuracy in a wide range of frequencies[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 14 (7): 563- 566. |
33 | 王磊. X波段高隔离度双信道多波束天线系统实现[J]. 无线电工程, 2019, 48 (10): 883- 889. |
WANG L . Implementation of X-band dual channel multi-beam antenna system with high isolation[J]. Radio Engineering, 2019, 48 (10): 883- 889. |
[1] | 李冬, 焦义文, 高泽夫, 杨文革, 毛飞龙, 滕飞. 基于GPU的相位干涉仪FX鉴相算法[J]. 系统工程与电子技术, 2022, 44(11): 3320-3329. |
[2] | 程春霞, 罗丽燕. 共口径双圆极化微带天线[J]. 系统工程与电子技术, 2021, 43(7): 1813-1818. |
[3] | 王占刚, 王大鸣, 巴斌, 张彦奎. 基于高拉伸度遗传算法的相关干涉仪测向算法[J]. 系统工程与电子技术, 2018, 40(1): 39-44. |
[4] | 刘博宇, 李陟, 杨于杰, 李宏宇, 史建华. 基于LFM信号的分布式空间动平台定位技术[J]. 系统工程与电子技术, 2017, 39(3): 482-487. |
[5] | 潘玉剑, 张晓发, 黄敬健, 杨骏, 袁乃昌. 模拟鉴相圆阵干涉仪测向性能的提高及其验证[J]. 系统工程与电子技术, 2015, 37(6): 1237-1241. |
[6] | 李蔚, 郭福成, 柳征, 姜文利. 基于等长基线干涉仪的单脉冲被动定位方法[J]. 系统工程与电子技术, 2015, 37(2): 266-270. |
[7] | 于涛, 尹成友, 刘汉. 同轴线馈电的球面共形微带天线的数值分析[J]. 系统工程与电子技术, 2015, 37(11): 2432-2437. |
[8] | 吴癸周, 张敏, 郭福成. 旋转长基线干涉仪的系统偏差联合估计方法[J]. 系统工程与电子技术, 2015, 37(11): 2454-2459. |
[9] | 于涛, 尹成友. 球状微带天线分析中细条带馈电模型的构建[J]. 系统工程与电子技术, 2014, 36(9): 1712-1716. |
[10] | 姜勤波,刘壮华,郑健,余江波. 基于最大后验概率的单星多目标无源定位算法[J]. 系统工程与电子技术, 2014, 36(10): 1906-1912. |
[11] | 张亮, 徐振海, 熊子源, 王雪松. 基于圆阵干涉仪的被动导引头宽带测向方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 462-466. |
[12] | 傅佳辉,吴群, 张放,刘敏. 毫米波微带双频平面天线阵研究[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 746-749. |
[13] | 袁家德, 顾长青. 曲面微带天线电磁散射特性分析[J]. Journal of Systems Engineering and Electronics, 2010, 32(11): 2322-2324. |
[14] | 韩韬, 郭福成. LBI瞬时测距系统中的相位差解模糊方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2086-2089. |
[15] | 赵书晨, 王秉中. 微带阵列天线雷达散射截面缩减技术研究进展[J]. Journal of Systems Engineering and Electronics, 2009, 31(4): 812-815. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||