1 |
GAO Y S , KANG B C , CHEN Y B , et al. A simple and all-optical microwave Doppler frequency shift and phase measurement system based on sagnac loop and I/Q detection[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 1- 9.
|
2 |
JHA A K , LAMECKI A , MROZOWSKI M , et al. A highly sensitive planar microwave sensor for detecting direction and angle of rotation[J]. IEEE Trans.on Microwave Theory and Techniques, 2020, 68 (4): 1598- 1609.
doi: 10.1109/TMTT.2019.2957369
|
3 |
ALPARONE M , NUNZIATA F , ESTATICO C , et al. A multichannel data fusion method to enhance the spatial resolution of microwave radiometer measurements[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 2213- 2221.
doi: 10.1109/TGRS.2020.3005204
|
4 |
MICHLER F , SCHEINER B , REISSLAND T , et al. Micrometer sensing with microwaves: precise radar systems for innovative measurement applications[J]. IEEE Journal of Microwaves, 2021, 1 (1): 202- 217.
doi: 10.1109/JMW.2020.3034988
|
5 |
ARTEMCHUK P Y , ZHANG J , PROKOPENKO O V , et al. Measurement of microwave signal frequency by a pair of spin-torque microwave diodes[J]. IEEE Magnetics Letters, 2021, 12, 1- 5.
|
6 |
ZHU B B , TANG J , ZHANG W F , et al. Broadband instantaneous multi-frequency measurement based on a Fourier domain mode-locked laser[J]. IEEE Trans.on Microwave Theory and Techniques, 2021, 69 (10): 4576- 4583.
doi: 10.1109/TMTT.2021.3103569
|
7 |
LIU J L , SHI T X , CHEN Y . High-accuracy multiple microwave frequency measurement with two-step accuracy improve ment based on stimulated Brillouin scattering and frequency-to-time mapping[J]. Journal of Lightwave Technology, 2021, 39 (7): 2023- 2032.
doi: 10.1109/JLT.2020.3044251
|
8 |
WANG D , ZHANG X D , ZHOU W N , et al. Microwave frequency measurement using Brillouin phase-gain ratio with improved measurement accuracy[J]. IEEE Microwave and Wireless Components Letters, 2021, 31 (12): 1335- 1338.
doi: 10.1109/LMWC.2021.3110247
|
9 |
WEN J , SHI D F , JIA Z Y , et al. Precise identification of wideband multiple microwave frequency based on self-heterodyne low-coherence interferometry[J]. Journal of Lightwave Technology, 2021, 39 (10): 3169- 3176.
doi: 10.1109/JLT.2021.3064866
|
10 |
SHI J Z , ZHANG F Z , BEN D , et al. Photonics-based broadband microwave instantaneous frequency measurement by frequency-to-phase-slope mapping[J]. IEEE Trans.on Microwave Theory and Techniques, 2019, 67 (2): 544- 552.
doi: 10.1109/TMTT.2018.2875683
|
11 |
YANG Y , MA C , FAN B C , et al. Photonics-based simultaneous angle of arrival and frequency measurement system with multiple-target detection capability[J]. Journal of Lightwave Technology, 2021, 39 (24): 7656- 7663.
doi: 10.1109/JLT.2021.3087526
|
12 |
ZHANG H , ZHENG P F , YANG H M , et al. A microwave frequency measurement system based on Si3N4 ring-assisted Mach-Zehnder interferometer[J]. IEEE Photonics Journal, 2020, 12 (4): 1- 13.
|
13 |
LIU L , XUE W . Instantaneous microwave frequency measurement based on two cascaded photonic crystal nanocavities[J]. IEEE Photonics Journal, 2020, 12 (6): 1- 9.
|
14 |
SHI J Z , ZHANG F Z , BEN D , et al. Simultaneous radar detection and frequency measurement by broadband microwave photonic processing[J]. Journal of Lightwave Technology, 2020, 38 (8): 2171- 2179.
doi: 10.1109/JLT.2020.2965113
|
15 |
JIAO W T , CHENG M , WANG K , et al. Demonstration of photonic-assisted microwave frequency measurement using a notch filter on silicon chip[J]. Journal of Lightwave Technology, 2021, 39 (21): 6786- 6795.
doi: 10.1109/JLT.2021.3106107
|
16 |
LI X R , WEN A J , LI X Y , et al. Photonic instantaneous frequency measurement using a dense wavelength-division multiplexer[J]. Applied Optics, 2021, 60 (27): 8286- 8290.
doi: 10.1364/AO.434579
|
17 |
ZHANG X M , CHI H , ZHANG X M , et al. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microwave and Wireless Components Letters, 2009, 19 (6): 422- 424.
doi: 10.1109/LMWC.2009.2020046
|
18 |
ZHOU J Q , ADITYA S , SHUM P P , et al. Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response[J]. IEEE Photonics Technology Letters, 2010, 22 (10): 682- 684.
doi: 10.1109/LPT.2010.2043946
|
19 |
SONG S J , CHEW S X , NGUYEN L , et al. High-resolution microwave frequency measurement based on dynamic frequency-to-power mapping[J]. Optics Express, 2021, 29 (26): 42553- 42568.
doi: 10.1364/OE.442867
|
20 |
NGUYEN L V T . Microwave photonic technique for frequency measurement of simultaneous signals[J]. IEEE Photonics Technology Letters, 2009, 21 (10): 642- 644.
doi: 10.1109/LPT.2009.2015890
|
21 |
YE C H , FU H Y , ZHU K , et al. All-optical approach to microwave frequency measurement with large spectral range and high accuracy[J]. IEEE Photonics Technology Letters, 2012, 24 (7): 614- 616.
doi: 10.1109/LPT.2012.2185688
|
22 |
LI Y H , KUSE N , FERMANN M . Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength-and time-division multiplexing[J]. Optics Express, 2017, 25 (16): 18863- 18871.
doi: 10.1364/OE.25.018863
|
23 |
ZHENG S J , GE S X , ZHANG X M , et al. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2012, 24 (13): 1115- 1117.
doi: 10.1109/LPT.2012.2196035
|
24 |
WU K , LI J Q , ZHANG Y D , et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with ultra-wide range[J]. Optik-International Journal for Light and Electron Optics, 2015, 126 (19): 1935- 1940.
doi: 10.1016/j.ijleo.2015.05.038
|
25 |
JIANG H Y , MARPAUNG D , PAGANI M , et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3 (1): 30- 34.
doi: 10.1364/OPTICA.3.000030
|
26 |
XIN F D , YAN J J , LIU Q D . Microwave frequency measurement based on optical phase modulation and stimulated Brillouin scattering[J]. Electronics Letters, 2017, 53 (14): 937- 939.
doi: 10.1049/el.2017.0125
|
27 |
JIAO W T , YOU K , SUN J Q . Multiple microwave frequency measurement with improved resolution based on stimulated Brillouin scattering and nonlinear fitting[J]. IEEE Photonics Journal, 2019, 11 (1): 1- 12.
|
28 |
ZHAO Q J , YAN J J . Phase-coded microwave signal generation with a built-in optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator[J]. Applied Optics, 2021, 60 (21): 5995- 6001.
doi: 10.1364/AO.426888
|
29 |
ZHUO H , WEN A J , WANG Y . Photonic angle-of-arrival measurement without direction ambiguity based on a dual-parallel Mach-Zehnder modulator[J]. Optics Communications, 2019, 451, 286- 289.
doi: 10.1016/j.optcom.2019.06.074
|
30 |
PREUSSLER S , SCHNEIDER T . Bandwidth reduction in a multistage Brillouin system[J]. Optics Letters, 2012, 37 (19): 4122- 4124.
|