1 |
HAYKIN S , SETOODEH P . Cognitive radio networks: the spectrum supply chain paradigm[J]. IEEE Trans.on Cognitive Communications and Networking, 2015, 1 (1): 3- 28.
doi: 10.1109/TCCN.2015.2488627
|
2 |
KOLODET P J. Spectrum policy task force report[R]. Wash-ington, D.C. : Federal Communications Commission, 2002.
|
3 |
DATLA D , WYGLINSKI M , MINDEN J . A spectrum surveying framework for dynamic spectrum access networks[J]. IEEE Trans.on Vehicular Technology, 2009, 58 (8): 4158- 4168.
doi: 10.1109/TVT.2009.2021601
|
4 |
LIANG Y C , CHEN K C , LI Y , et al. Cognitive radio networking and communications: an overview[J]. IEEE Trans.on Vehicular Technology, 2011, 60 (7): 3386- 3407.
doi: 10.1109/TVT.2011.2158673
|
5 |
KANG S , JOO C . Low-complexity learning for dynamic spectrum access in multi-user multi-channel networks[J]. IEEE Trans.on Mobile Computing, 2021, 22 (11): 3267- 3281.
|
6 |
SHBAT M, ORDAZ-SALAZAR F C, GONZÁLEZ-SALAS J S. Spectrum sensing challenges of IOT nodes designed under 5G network standards[C]//Proc. of the IEEE 15th International Conference on Electrical Engineering, Computing Science and Automatic Control, 2018.
|
7 |
EJAZ W , IBNKAHLA M . Multiband spectrum sensing and resource allocation for IoT in cognitive 5G networks[J]. IEEE Internet of Things Journal, 2018, 5 (1): 150- 163.
doi: 10.1109/JIOT.2017.2775959
|
8 |
KATZ M, MATINMIKKO-BLUE M, LATVA-AHO M. 6 Genesis flagship program: building the bridges towards 6G-enabled wireless smart society and ecosystem[C]//Proc. of the IEEE 10th Latin-American Conference on Communications, 2018.
|
9 |
KASSA Z , KHALIFE J , NEINAVAIE N . Cognitive opportunistic navigation in private networks with 5G signals and beyond[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 16 (1): 129- 143.
|
10 |
ALI A , HAMOUDA W . Advances on spectrum sensing for cognitive radio networks: theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19 (2): 1277- 1304.
|
11 |
AWIN F , ABDEL-RAHEEM E , TEPE K . Blind spectrum sensing approaches for interweaved cognitive radio system: a tutorial and short course[J]. IEEE Communications Surveys & Tutorials, 2019, 21 (1): 238- 259.
|
12 |
QIN Z , ZHOU X , ZHANG L , et al. 20 years of evolution from cognitive to intelligent communications[J]. IEEE Trans.on Cognitive Communications and Networking, 2020, 6 (1): 6- 20.
doi: 10.1109/TCCN.2019.2949279
|
13 |
MYKE D, CELSO B, WALDIR S. Trends and challenges for the spectrum sensing in the next generation of communication systems[C]//Proc. of the IEEE International Conference on Consumer Electronics, 2020.
|
14 |
冉洁, 司宾强. 认知无线电频谱感知技术综述[C]//第十四届全国信号和智能信息处理与应用学术会议, 2021.
|
|
RAN J, SI B Q. Overview of spectrum sensing technology in cognitive radio techniques[C]//Proc. of the 14th National Conference on Signal and Intelligent Information Processing and Application, 2021.
|
15 |
余盼, 李斌, 赵成林. 基于能量检测的异步感知算法[J]. 通信学报, 2017, 38 (3): 165- 173.
|
|
YU P , LI B , ZHAO C L . Asynchronous perception algorithm based on energy detection[J]. Journal on Communications, 2017, 38 (3): 165- 173.
|
16 |
许炜阳, 李有均, 徐宏乾, 等. 基于随机矩阵非渐近谱理论的协作频谱感知算法研究[J]. 电子与信息学报, 2018, 40 (1): 123- 129.
|
|
XU W Y , LI Y J , XU H Q , et al. Study on cooperative spectrum sensing algorithm based on random matrix non-asymptotic spectral theory[J]. Journal of Electronics & Information Technology, 2018, 40 (1): 123- 129.
|
17 |
KAY S M. Fundamentals of statistical signal processing, volume Ⅱ: detection theory[M]. Upper Saddle River: Prentice Hall, 1998.
|
18 |
DIGHAM F F , ALOUINI M S , SIMONM K . On the energy detection of unknown signals over fading channels[J]. IEEE Trans.on Communications, 2007, 55 (1): 21- 24.
doi: 10.1109/TCOMM.2006.887483
|
19 |
URKOWITZ H . Energy detection of unknown deterministic signals[J]. Proceedings of IEEE, 1967, 55 (4): 523- 531.
|
20 |
GISMALLA H , ALSUSA E . Performance analysis of the perio-dogram-based energy detector in fading channels[J]. IEEE Trans.on Signal Processing, 2011, 59 (8): 3712- 3721.
|
21 |
YUCEK T , ARSLAN H . A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys & Tutorials, 2009, 11 (1): 116- 130.
|
22 |
LIU C , LI H S , WANG J , et al. Optimal eigenvalue weighting detection for multi-antenna cognitive radio networks[J]. IEEE Trans.on Wireless Communications, 2017, 16 (4): 2083- 2096.
|
23 |
ZENG Y , LIANG Y C . Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Trans.on Communications, 2009, 57 (6): 1784- 1793.
|
24 |
TAHERPOUR A , NASIRI-KENARI M , GAZOR S . Multiple antenna spectrum sensing in cognitive radios[J]. IEEE Trans.on Wireless Communications, 2010, 9 (2): 814- 823.
|
25 |
WANG P , FANG J , HAN N , et al. Multiantenna-assisted spectrum sensing for cognitive radio[J]. IEEE Trans.on Vehicular Technology, 2010, 59 (4): 1791- 1800.
|
26 |
PILLAY N , XU H J . Blind eigenvalue-based spectrum sensing for cognitive radio networks[J]. IET Communications, 2012, 6 (11): 1388- 1396.
|
27 |
JOHNSTONE I M . On the distribution of the largest eigenvalue in principal components analysis[J]. The Annals of Statistics, 2001, 29 (2): 295- 327.
|
28 |
YAZDIAN E , GAZOR S , BASTANI H . Source enumeration in large arrays using moments of eigenvalues and relatively few samples[J]. IET Signal Processing, 2012, 6 (7): 689- 696.
|
29 |
SEDIGHI S , TAHERPOUR A , GAZOR S , et al. Eigenvalue-based multiple antenna spectrum sensing: higher order moments[J]. IEEE Trans.on Wireless Communications, 2017, 16 (2): 1168- 1184.
|
30 |
HUANG L , FANG J , LIU K F , et al. An eigenvalue-moment-ratio approach to blind spectrum sensing for cognitive radio under sample-starving environment[J]. IEEE Trans.on Vehicular Technology, 2015, 64 (8): 3465- 3480.
|
31 |
赵文静, 李贺, 金明录. 基于特征值的频谱感知融合算法[J]. 通信学报, 2019, 40 (11): 57- 64.
|
|
ZHAO W J , LI H , JIN M L . Fusion spectrum sensing algorithm based on eigenvalues[J]. Journal on Communications, 2019, 40 (11): 57- 64.
|