1 |
陈出新. 弹道导弹跟踪方法和算法研究[D]. 西安: 西北工业大学, 2014.
|
|
CHEN C X. Study on approaches and algorithms for tracking ballistic missile[D]. Xi'an: Northwestern Polytechnical University, 2014.
|
2 |
张龙. 弹道导弹高阶容积卡尔曼滤波弹道跟踪方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
ZHANG L. Research of ballistic missile trajectory tracking with high-degree cubature Kalman filter[D]. Harbin: Harbin Institute of Technology, 2017.
|
3 |
YU J F, YANG S C, ZHANG Y W. Flight trajectory correction of target missile and design of tracking guidance[C]//Proc. of the International Conference on Quality, Reliability, Risk, Main-tenance, and Safety Engineering, 2019: 195-202.
|
4 |
YANG K , YAAKOV B , PETER W , et al. Observability of a thrusting/ballistic trajectory in 3-D from a single fixed passive sensor[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (6): 2971- 2979.
doi: 10.1109/TAES.2018.2836539
|
5 |
LOPATKA J, OKON'-FAFARA M, KAWALEC A, et al. Model of ballistic targets'dynamics used for trajectory tracking algorithms[C]//Proc. of the Conference on Reconnaissance and Electronic Warfare Systems, 2017.
|
6 |
BARANOWSKI L , GADOMSKI B , MAJEWSKI P , et al. Explicit "ballistic M-model": a refinement of the implicit "modified point mass trajectory model"[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64 (1): 81- 89.
doi: 10.1515/bpasts-2016-0010
|
7 |
HAN S K , RA W S , WHANG I . Geometric joint probabilistic data association approach to ballistic missile warhead tracking using FMCW radar seeker[J]. IET Radar, Sonar & Navigation, 2017, 10 (8): 1422- 1430.
|
8 |
PAUL B Q , CHRISTIAN M , FRANCOIS L G . Particle filtering and the laplace method for target tracking[J]. IEEE Trans.on Aerospace and Electronic Systems, 2016, 52 (1): 350- 366.
doi: 10.1109/TAES.2015.140419
|
9 |
YU M , CHEN W H , CHAMBERS J . State dependent multiple model-based particle filtering for ballistic missile tracking in a low-observable environment[J]. Aerospace Science and Technology, 2017, 67, 144- 154.
doi: 10.1016/j.ast.2017.03.028
|
10 |
WANG F, CHU X F, WU N F, et al. An improved trajectory estimation algorithm in boost phase[C]//Proc. of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference, 2020: 159-163.
|
11 |
NANDA S K, BHATIA V, SINGH A K. Performance analysis of Cubature rule based Kalman filter for target tracking[C]//Proc. of the IEEE 17th India Council International Conference, 2020.
|
12 |
BHAUMIK S, SINGH N K, BHATTACHARYA S. A comparison of several nonlinear filters for ballistic missile tracking on re-entry[C]//Proc. of the IEEE International Conference on Control, Measurement and Instrumentation, 2016.
|
13 |
WANG X G , QIN W T , BAI Y L , et al. Trajectory estimation for ballistic missile in boost stage using robust filtering[J]. IET Radar, Sonar & Navigation, 2017, 11 (3): 513- 519.
|
14 |
LI D H, LI Y, ZHU G F, et al. Comparison of EKF and UKF target tracking algorithms based on observation distance[C]//Proc. of the 7th International Conference on Information Science and Control Engineering, 2020: 402-404.
|
15 |
GUSTAFSSON F , HENDEBY G . Some relations between extended and unscented Kalman filters[J]. IEEE Trans.on Signal Processing, 2012, 60 (2): 545- 555.
doi: 10.1109/TSP.2011.2172431
|
16 |
DENG Z H , SHI L , YIN L J , et al. UKF based on maximum correntropy criterion in the presence of both intermittent observations and non-Gaussian noise[J]. IEEE Sensors Journal, 2020, 20 (14): 7766- 7773.
doi: 10.1109/JSEN.2020.2980354
|
17 |
LI X T, ZHENG Y, SUN T T. Application of an improved and unscented Kalman filtering algorithm in target tracking[C]//Proc. of the Chinese Control and Decision Conference, 2019.
|
18 |
ZHOU W D , HOU J X . A new adaptive high-order unscented Kalman filter for improving the accuracy and robustness of target tracking[J]. IEEE Access, 2019, 7, 118484- 118497.
doi: 10.1109/ACCESS.2019.2936879
|
19 |
GUO Y D, GONG J. Group targets tracking using maximum entropy fuzzy based on fire-fly algorithm and particle filter[C]//Proc. of the 7th International Forum on Electrical Engineering and Automation, 2020: 937-942.
|
20 |
YANG F, HU H W, ZHENG L T, et al. The application of improved particle filtering in ballistic reentry target trajectory tracking[C]//Proc. of the Chinese Automation Congress, 2018: 4089-4094.
|
21 |
ULLAH I , SHEN Y , SU X . A localization based on unscented Kalman filter and particle filter localization algorithms[J]. IEEE Access, 2019, 8, 2233- 2246.
|
22 |
BATTISTINI S, MENEGAZ H M T. Interacting multiple model unscented filter for tracking a ballistic missile during its boost phase[C]//Proc. of the IEEE Aerospace Conference, 2017.
|
23 |
QIN W T , WANG X G , CUI N G . Maximum correntropy sparse Gauss-hermite quadrature filter and its application in tracking ballistic missile[J]. IET Radar, Sonar & Navigation, 2017, 11 (9): 1388- 1396.
|
24 |
LAWTON J A , JESIONOWSKI R J , ZARCHAN P . Comparison of four filtering options for a radar tracking problem[J]. AIAA Journal of Guidance, Control and Dynamics, 1998, 21 (4): 618- 623.
doi: 10.2514/2.4280
|
25 |
FARINA A , RISTIC B , BENVENUTI D . Tracking a ballistic target: comparison of several nonlinear filters[J]. IEEE Trans.on Aerospace and Electronic Systems, 2002, 38 (3): 854- 867.
doi: 10.1109/TAES.2002.1039404
|
26 |
WANG X G , QIN W T , BAI Y L , et al. Trajector estimation for ballistic missile in boost stage using robust filtering[J]. IET Radar, Sonar & Navigation, 2017, 11 (3): 513- 519.
|
27 |
GONG L Y, YU M. A new interacting multiple model particle filter based ballistic missile tracking method[C]//Proc. of the 3rd International Conference on Frontiers of Signal Processing, 2017: 81-85.
|
28 |
YU M , GONG L Y , OH H , et al. Multiple model ballistic missile tracking with state-dependent transitions and Gaussian partical filtering[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (3): 1066- 1081.
doi: 10.1109/TAES.2017.2773258
|
29 |
刘林. 人造地球卫星轨道力学[M]. 北京: 高等教育出版社, 1992.
|
|
LIU L . Orbiter science of man-made earth satellite[M]. Beijing: Higher Education Press, 1992.
|
30 |
刘林. 航天器轨道理论[M]. 北京: 国防工业出版社, 2000.
|
|
LIU L . Orbit theory of spacecraft[M]. Beijing: National Defence Industy Press, 2000.
|
31 |
WRIGHT L A , KINDEL B C , PILEWSKIE P , et al. Kampe and K.S. schmidt. below-cloud atmospheric correction of airborne hyperspectral imagery using simultaneous solar spectral irradiance observations[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (2): 1392- 1409.
doi: 10.1109/TGRS.2020.3003209
|
32 |
普承恩, 王良明, 傅健. 基于EKF落点预测的二维弹道修正弹制导方法[J]. 兵器装备工程学报, 2018, 39 (6): 52- 57.
doi: 10.11809/bqzbgcxb2018.06.011
|
|
PU C E , WANG L M , FU J . A guidance method for two dimensional trajectory correction projectile based on impact point prediction EKF[J]. Journal of Weapon Equipment Engineering, 2018, 39 (6): 52- 57.
doi: 10.11809/bqzbgcxb2018.06.011
|