1 |
靳崇, 孙娟, 王永佳, 等. 基于直觉模糊TOPSIS和变权VIKOR的防空目标威胁综合评估[J]. 系统工程与电子技术, 2022, 44 (1): 172- 180.
|
|
JIN C , SUN J , WANG Y J , et al. Threat comprehensive assessment for air defense targets based on intuitionistic fuzzy TOPSIS and variable weight VIKOR[J]. Systems Engineering and Electronics, 2022, 44 (1): 172- 180.
|
2 |
QU C W, HE Y. A method of threat assessment using multiple attribute decision making[C]//Proc. of the 6th International Confe-rence on Signal Processing, 2002, 2: 1091-1095.
|
3 |
卢盈齐, 范成礼, 付强, 等. 基于改进IFRS相似度和信息熵的反导作战目标威胁评估[J]. 系统工程与电子技术, 2022, 44 (4): 1230- 1238.
|
|
LU Y Q , FAN C L , FU Q , et al. Missile defense target threat assessment based on improved similarity measure and information entropy of intuitionistic fuzzy rough sets[J]. Systems Engineering and Electronics, 2022, 44 (4): 1230- 1238.
|
4 |
赵烨南, 杜伟伟, 陈铁健, 等. 基于集对分析的坦克多目标威胁评估方法[J]. 火力与指挥控制, 2020, 45 (6): 108- 112.
|
|
ZHAO Y N , DU W W , CHEN T J , et al. Multi-target threat assessment method of tank based on set pair analysis[J]. Fire Control & Command Control, 2020, 45 (6): 108- 112.
|
5 |
柴慧敏, 张勇, 李欣粤, 等. 基于深度学习的空中目标威胁评估方法[J]. 系统仿真学报, 2022, 34 (7): 1459- 1467.
doi: 10.16182/j.issn1004731x.joss.21-0080
|
|
CHAI H M , ZHANG Y , LI X Y , et al. Aerial target threat assessment method based on deep learning[J]. Journal of System Simulation, 2022, 34 (7): 1459- 1467.
doi: 10.16182/j.issn1004731x.joss.21-0080
|
6 |
孔尚萍, 张海瑞, 廖选平, 等. 基于AHP与熵权法的空中目标威胁评估方法[J]. 战术导弹技术, 2018, (1): 79- 84.
doi: 10.16358/j.issn.1009-1300.2018.01.14
|
|
KONG S P , ZHANG H R , LIAO X P , et al. Aerial targets threat assessment based on AHP and entropy weight method[J]. Tactical Missile Technology, 2018, (1): 79- 84.
doi: 10.16358/j.issn.1009-1300.2018.01.14
|
7 |
LUO R N , HUANG S C , ZHAO Y , et al. Threat assessment method of low altitude slow small (LSS) targets based on information entropy and AHP[J]. Entropy, 2021, 23 (10): 1292.
doi: 10.3390/e23101292
|
8 |
任耀军, 袁修久, 黄林, 等. 毕达哥拉斯三角犹豫模糊Muirhead平均算子的目标威胁评估应用[J]. 电光与控制, 2021, 28 (4): 16- 20.16-20, 63
doi: 10.3969/j.issn.1671-637X.2021.04.004
|
|
REN Y J , YUAN X J , HUANG L , et al. Pythagorean hesitant triangular fuzzy muirhead mean operator and its application in target threat assessment[J]. Electronics Optics & Control, 2021, 28 (4): 16- 20.16-20, 63
doi: 10.3969/j.issn.1671-637X.2021.04.004
|
9 |
赵若静, 杨风暴, 吉琳娜. 基于可能性理论扩展灰关联的目标威胁评估[J]. 指挥信息系统与技术, 2021, 12 (3): 23- 29.
|
|
ZHAO R J , YANG F B , JI L N . Target threat assessment based on extended grey correlation with possibility theory[J]. Command Information System and Technology, 2021, 12 (3): 23- 29.
|
10 |
JANG J S R . ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1993, 23 (3): 665- 685.
doi: 10.1109/21.256541
|
11 |
LIU M , DONG M Y , WU C . A new ANFIS for parameter prediction with numeric and categorical inputs[J]. IEEE Trans.on Automation Science and Engineering, 2010, 7 (3): 645- 653.
|
12 |
ARMAGHANI D J , HARANDIZADEH H , MOMENI E . Load carrying capacity assessment of thin-walled foundations: an ANFIS-PNN model optimized by genetic algorithm[J]. Engineering with Computers, 2021,
doi: 10.1007/s00366-21-01380-0
|
13 |
FREY B J , DUECK D . Clustering by passing messages between data points[J]. Science, 2007, 315 (5814): 972- 976.
|
14 |
MADANDOUST R , BUNGEY J H , GHAVIDEL R . Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models[J]. Computational Materials Science, 2012, 51 (1): 261- 272.
|
15 |
HARANDIZADEH H , ARMAGHANI D J , ASTERIS P G , et al. TBM performance prediction developing a hybrid ANFIS-PNN predictive model optimized by imperialism competitive algorithm[J]. Neural Computing and Applications, 2021, 33 (23): 16149- 16179.
|
16 |
JIA X D , DI Y , FENG J S , et al. Adaptive virtual metrology for semiconductor chemical mechanical planarization process using GMDH-type polynomial neural networks[J]. Journal of Process Control, 2018, 62, 44- 54.
|
17 |
HUANG W , OH S K , PEDRYCZ W . Fuzzy reinforced polynomial neural networks constructed with the aid of PNN architecture and fuzzy hybrid predictor based on nonlinear function[J]. Neurocomputing, 2021, 458, 454- 467.
|
18 |
ARMAGHANI D J , HARANDIZADEH H , MOMENI E , et al. An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity[J]. Artificial Intelligence Review, 2022, 55 (3): 2313- 2350.
|
19 |
HARANDIZADEH H , TOUFIGH M M , TOUFIGH V . Application of improved ANFIS approaches to estimate bearing capacity of piles[J]. Soft Computing, 2019, 23 (19): 9537- 9549.
|
20 |
GAN G J , NG M K P . Subspace clustering using affinity pro-pagation[J]. Pattern Recognition, 2015, 48 (4): 1455- 1464.
|
21 |
HU Q , ZHANG Q , SI X S , et al. Intelligent fault diagnosis approach based on composite multi-scale dimensionless indicators and affinity propagation clustering[J]. IEEE Sensors Journal, 2020, 20 (19): 11439- 11453.
|
22 |
AHMAD A , KHAN S S . Survey of state-of-the-art mixed data clustering algorithms[J]. IEEE Access, 2019, 7, 31883- 31902.
|
23 |
ZHANG K , GU X S . An affinity propagation clustering algorithm for mixed numeric and categorical datasets[J]. Mathematical Problems in Engineering, 2014, 486075.
|
24 |
BEKTAS A, SCHUMANN R. How to optimize Gower distance weights for the k-medoids clustering algorithm to obtain mobility profiles of the Swiss population[C]//Proc. of the 6th Swiss Conference on Data Science, 2019: 51-56.
|
25 |
FOSS A H , MARKATOU M , RAY B . Distance metrics and clustering methods for mixed type data[J]. International Statistical Review, 2019, 87 (1): 80- 109.
|
26 |
AKAY O , YUKSEL G . Hierarchical clustering of mixed variable panel data based on new distance[J]. Communications in Statistics-Simulation and Computation, 2019, 50 (6): 1695- 1710.
|
27 |
CHENG Y M , JIA H . Categorical and numerical attribute data clustering based on a unified similarity metric without knowing cluster number[J]. Pattern Recognition, 2013, 46 (8): 2228- 2238.
|
28 |
QUE X , JIANG S Y , YANG J Y , et al. A similarity measurement with entropy-based weighting for clustering mixed numerical and categorical datasets[J]. Algorithms, 2021, 14 (6): 184.
|
29 |
HARANDIZADEH H , ARMAGHANI D J . Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA[J]. Applied Soft Computing, 2021, 99, 106904.
|
30 |
HARANDIZADEH H , JAHED A D , KHARI M . A new development of ANFIS-GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets[J]. Engineering with Computers, 2021, 37 (1): 685- 700.
|