系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (10): 3134-3142.doi: 10.12305/j.issn.1001-506X.2022.10.17
王琮1, 沈会良1, 夏永祥2,*, 白光晗3, 方依宁3
收稿日期:
2021-11-05
出版日期:
2022-09-20
发布日期:
2022-10-24
通讯作者:
夏永祥
作者简介:
王琮(1998—), 女, 硕士研究生, 主要研究方向为复杂网络鲁棒性|沈会良(1974—), 男, 教授, 博士,主要研究方向为机器学习|夏永祥(1974—), 男, 教授, 博士,主要研究方向为复杂网络鲁棒性|白光晗(1986—), 男, 讲师, 博士, 主要研究方向为系统可靠性、系统韧性|方依宁(1991—), 女, 讲师, 博士, 主要研究方向为复杂系统建模与辩识
基金资助:
Cong WANG1, Huiliang SHEN1, Yongxiang XIA2,*, Guanghan BAI3, Yining FANG3
Received:
2021-11-05
Online:
2022-09-20
Published:
2022-10-24
Contact:
Yongxiang XIA
摘要:
装备保障体系在现代战争中发挥着重要的后勤保障作用。一旦保障体系中的关键保障节点遭到袭击, 将会严重影响到系统保障能力的发挥。因此, 研究装备保障体系中的关键节点识别技术, 找出薄弱环节, 对于未来战争有着重要意义。本文以复杂网络为理论基础, 提出了一种衡量保障节点重要性的指标。该节点重要性指标一方面衡量保障节点在一定空间范围内的连接能力, 另一方面按照新提出的面向任务需求的路由方式, 衡量保障节点的全局运输能力。通过与另外6种节点的重要性指标对比, 结果从多方面证明了所提的节点重要性指标在识别关键节点时的有效性及适用性。
中图分类号:
王琮, 沈会良, 夏永祥, 白光晗, 方依宁. 装备保障体系关键节点分析[J]. 系统工程与电子技术, 2022, 44(10): 3134-3142.
Cong WANG, Huiliang SHEN, Yongxiang XIA, Guanghan BAI, Yining FANG. Analysis of critical nodes in equipment support system[J]. Systems Engineering and Electronics, 2022, 44(10): 3134-3142.
1 |
邢彪, 曹军海, 董原生, 等. 装备保障体系结构描述及鲁棒性分析[J]. 火力与指挥控制, 2017, 42 (7): 1- 5.
doi: 10.3969/j.issn.1002-0640.2017.07.001 |
XING B , CAO J H , DONG Y S , et al. Research on equipment support system of systems architecture and robustness analysis[J]. Fire Control & Command Control, 2017, 42 (7): 1- 5.
doi: 10.3969/j.issn.1002-0640.2017.07.001 |
|
2 |
闫旭, 宋太亮, 邢彪, 等. 基于复杂网络的装备保障体系研究现状及展望[J]. 火力与指挥控制, 2018, 43 (2): 1- 4.1-4, 11
doi: 10.3969/j.issn.1002-0640.2018.02.001 |
YAN X , SONG T L , XING B , et al. Current status and prospect for equipment support system of systems based on complex network[J]. Fire Control & Command Control, 2018, 43 (2): 1- 4.1-4, 11
doi: 10.3969/j.issn.1002-0640.2018.02.001 |
|
3 | 樊兆雄. 基于复杂网络的装备保障体系研究现状及展望[J]. 数字通信世界, 2020, 2, 58. |
FAN Z X . Research status and prospect of equipment support system based on complex network[J]. Digital communication World, 2020, 2, 58. | |
4 |
NGUYEN D T , SHEN Y L , THAI M T . Detecting critical nodes in interdependent power networks for vulnerability assessment[J]. IEEE Trans.on Smart Grid, 2013, 4 (1): 151- 159.
doi: 10.1109/TSG.2012.2229398 |
5 |
ALBERT R , JEONG H , BARABASI A . Error and attack tolerance of complex networks[J]. Nature, 2000, 406, 378- 382.
doi: 10.1038/35019019 |
6 | 杨文辉, 毕天姝, 黄少锋, 等. 基于电网生存性评估的关键线路识别方法[J]. 中国电机工程学报, 2011, 31 (7): 29- 35. |
YANG W H , BI T S , HUANG S F , et al. An approach for critical lines identification based on the survivability of power grid[J]. Proceedings of the CSEE, 2011, 31 (7): 29- 35. | |
7 | ANDERSON R N. Blackout: NERC actions to prevent and mitigate the impacts of future cascading blackouts[R]. Princeton, New Jersey: NERC, 2004. |
8 |
GOH K I , OH E , KAHNG B , et al. Betweenness centrality correlation in social networks[J]. Physical Review E, 2003, 67, 017101.
doi: 10.1103/PhysRevE.67.017101 |
9 |
BRANDES U , BORGATTI S P , FREEMAN L C . Maintaining the duality of closeness and betweeness centrality[J]. Social Networks, 2016, 44, 153- 159.
doi: 10.1016/j.socnet.2015.08.003 |
10 |
LV L Y , CHEN D B , REN X L , et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650, 1- 63.
doi: 10.1016/j.physrep.2016.06.007 |
11 |
CHEN D B , LV L Y , SHANG M S , et al. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391 (4): 1777- 1787.
doi: 10.1016/j.physa.2011.09.017 |
12 | AI J, LI L Z, SU Z, et al. Node-importance identification in complex networks via neighbors average degree[C]//Proc. of the Chinese Control and Decision Conference, 2016: 1298-1303. |
13 |
CHEN D B , GAO H , LV L Y , et al. Identifying influential nodes in large-scale directed networks: the role of clustering[J]. PloS one, 2013, 8 (10): e77455.
doi: 10.1371/journal.pone.0077455 |
14 |
AKBARZADEH M , MEMARMONTAZERIN S , DERRIBLE S , et al. The role of travel demand and network centrality on the connectivity and resilience of an urban street system[J]. Transportation, 2019, 46 (4): 1127- 1141.
doi: 10.1007/s11116-017-9814-y |
15 | TIAN H, NIE B, ZHANG W J. Military units importance evaluation based on complex networks[C]//Proc. of the International Conference on Machine Vision and Human-machine Interface, 2010: 737-740. |
16 |
FARAMONDI L , OLIVA G , SETOLA R . Multi-criteria node criticality assessment framework for critical infrastructure networks[J]. International Journal of Critical Infrastructure Protection, 2020, 28, 100338.
doi: 10.1016/j.ijcip.2020.100338 |
17 |
YANG Y Z , YU L , WANG X , et al. A novel method to evaluate node importance in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 526, 121118.
doi: 10.1016/j.physa.2019.121118 |
18 |
FEI L G , MO H M , DENG Y . A new method to identify influential nodes based on combining of existing centrality measures[J]. Modern Physics Letters B, 2017, 31 (26): 1750243.
doi: 10.1142/S0217984917502438 |
19 |
WANG S B , ZHAO J L . Multi-attribute integrated measurement of node importance in complex networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25 (11): 113105.
doi: 10.1063/1.4935285 |
20 | LIU J X, CHEN S D, WANG Y G. Study on node importance of complex network based military COMmand Control networks[C]// Proc. of the International Conference on Machine Learning and Cybernetics, 2012: 920-923. |
21 |
LIU F , WANG Z , DENG Y . GMM: a generalized mechanics model for identifying the importance of nodes in complex networks[J]. Knowledge-Based Systems, 2020, 193, 105464.
doi: 10.1016/j.knosys.2019.105464 |
22 |
IBNOULOUAFI A , EL HAZITI M , CHERIFI H . M-centrality: identifying key nodes based on global position and local degree variation[J]. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018 (7): 073407.
doi: 10.1088/1742-5468/aace08 |
23 |
DU Y X , GAO C , HU Y , et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and its Applications, 2014, 399, 57- 69.
doi: 10.1016/j.physa.2013.12.031 |
24 |
LU M K . Node importance evaluation based on neighborhood structure hole and improved TOPSIS[J]. Computer Networks, 2020, 178, 107336.
doi: 10.1016/j.comnet.2020.107336 |
25 |
HU J T , DU Y X , MO H M , et al. A modified weighted TOPSIS to identify influential nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2016, 444, 73- 85.
doi: 10.1016/j.physa.2015.09.028 |
26 |
JIANG P , WANG Y X , LIU C , et al. Evaluating critical factors influencing the reliability of emergency logistics systems using multiple-attribute decision making[J]. Symmetry, 2020, 12 (7): 1115.
doi: 10.3390/sym12071115 |
27 | CHEN Q F , LIU L L , YANG Z Y , et al. Prediction approach of critical node based on multiple attribute decision making for opportunistic sensor networks[J]. Journal of Sensors, 2016, 2016 (4): 8. |
28 | ZHAO J , WANG Y C , DENG Y . Identifying influential nodes in complex networks from global perspective[J]. Chaos, Solitons & Fractals, 2020, 133, 109637. |
29 |
FAN C J , ZENG L , SUN Y Z , et al. Finding key players in complex networks through deep reinforcement learning[J]. Nature machine intelligence, 2020, 2 (6): 317- 324.
doi: 10.1038/s42256-020-0177-2 |
30 |
RUAN Y R , TANG J , HU Y L , et al. Efficient algorithm for the identification of node significance in complex network[J]. IEEE Access, 2020, 8, 28947- 28955.
doi: 10.1109/ACCESS.2020.2972107 |
31 |
WANG M , LI W C , GUO Y N , et al. Identifying influential spreaders in complex networks based on improved k-shell method[J]. Physica A: Statistical Mechanics and its Applications, 2020, 554, 124229.
doi: 10.1016/j.physa.2020.124229 |
32 |
YANG H H , AN S . Critical nodes identification in complex networks[J]. Symmetry, 2020, 12 (1): 123.
doi: 10.3390/sym12010123 |
33 |
MENG Y Y , TIAN X L , LI Z W , et al. Exploring node importance evolution of weighted complex networks in urban rail transit[J]. Physica A: Statistical Mechanics and its Applications, 2020, 558, 124925.
doi: 10.1016/j.physa.2020.124925 |
34 | ZHANG Y P, BAO Y Y, ZHAO S, et al. Identifying node importance by combining betweenness centrality and katz centrality[C]//Proc. of the International Conference on Cloud Computing and Big Data, 2015: 354-357. |
35 |
NIU Z , LI Q , MA C L , et al. Identification of critical nodes for enhanced network defense in MANET-IoT networks[J]. IEEE Access, 2020, 8, 183571- 183582.
doi: 10.1109/ACCESS.2020.3029736 |
36 | YANG P L , LIU X , XU G Q . A dynamic weighted TOPSIS method for identifging influential nodes in complex networks[J]. Modern Physics Letters B, 2018, 32 (19): 18502116. |
37 | LI X L, HAN Y L, WU X G, et al. Evaluating node importance in complex networks based on TOPSIS and gray correlation[C]//Proc. of the IEEE Chinese Control and Decision Conference, 2018: 750-754. |
38 | 刘涛, 白光晗, 陶俊勇, 等. 面向任务的复杂系统韧性评估方法[J]. 系统工程与电子技术, 2021, 43 (4): 1003- 1011. |
LIU T , BAI G H , TAO J Y , et al. Mission-oriented resilience evaluation method for complex system[J]. Systems Enginee-ring and Electronics, 2021, 43 (4): 1003- 1011. | |
39 | 彭鹏菲, 于钱, 李启元. 基于改进粒子群优化的多目标装备保障任务规划方法[J]. 系统工程与电子技术, 2017, 39 (3): 562- 568. |
PENG P F , YU Q , LI Q Y . Method of multi-object equipment support task planning based on improved particle swarm optimization[J]. Systems Engineering and Electronics, 2017, 39 (3): 562- 568. | |
40 | 钟季龙, 郭基联, 王卓健. 基于结构建模的装备体系结构可靠性混合模型[J]. 系统工程与电子技术, 2015, 37 (3): 713- 718. |
ZHONG J L , GUO J L , WANG Z J . Mixed model for equipment system of systems on structure reliability in context of structural modeling[J]. Systems Engineering and Electronics, 2015, 37 (3): 713- 718. | |
41 |
BARABASI A L , ALBERT R . Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512.
doi: 10.1126/science.286.5439.509 |
42 |
ESLAMI A , NEKOUI M , PISHRO-NIK H . Results on finite wireless networks on a line[J]. IEEE Trans.on Communications, 2010, 58 (8): 2204- 2211.
doi: 10.1109/TCOMM.2010.08.090119 |
43 |
MOTTER A E , LAI Y . Cascade-based attacks on complex networks[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2002, 66 (6): 65101- 65102.
doi: 10.1103/PhysRevE.66.065101 |
44 |
GUIMERA R , DIAZ-GUILERA A , VEGA-REDONDO F , et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89 (24): 248701.
doi: 10.1103/PhysRevLett.89.248701 |
45 |
FREEMAN L C . Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1 (3): 215- 239.
doi: 10.1016/0378-8733(78)90021-7 |
46 | WEN G H , DUAN Z S . Dynamics behaviors of weighted local-world evolving networks with extended links[J]. International Journal of Modern Physics C, 2009, 20 (11): 1719- 1735. |
[1] | 龚建兴, 朱雷, 王华兵, 丁佩元, 路程昭. 基于功能图的作战体系关键节点分析[J]. 系统工程与电子技术, 2022, 44(8): 2515-2521. |
[2] | 王岩韬, 杨拯. 航班运行风险网络的传播与控制改进[J]. 系统工程与电子技术, 2021, 43(9): 2544-2552. |
[3] | 毕可心, 吴明功, 张文斌, 温祥西, 杜坎. 基于速度障碍法的飞行冲突网络建模与分析[J]. 系统工程与电子技术, 2021, 43(8): 2163-2173. |
[4] | 李昂, 聂党民, 温祥西, 王泽坤, 杨诚修. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. |
[5] | 顾凌枫, 何明, 陈国友, 季敏惠, 刘锦涛. 无人机集群系统弹性研究[J]. 系统工程与电子技术, 2021, 43(1): 156-162. |
[6] | 李佳威, 吴明功, 温祥西, 刘飞. 基于最小连通支配集的复杂网络关键节点与连边识别方法[J]. 系统工程与电子技术, 2019, 41(11): 2541-2549. |
[7] | 王尔申, 王玉伟, 曲萍萍, 蓝晓宇, 陈佳美. 基于代价的复杂网络边攻击策略有效性分析[J]. 系统工程与电子技术, 2018, 40(4): 919-926. |
[8] | 丁峰, 周芳, 赵鑫, 于靖. Cyber攻击下韧性信息服务云环境能力评估[J]. 系统工程与电子技术, 2018, 40(12): 2722-2728. |
[9] | 郝羽成, 李成兵, 魏磊. 考虑节点过载的复杂网络级联失效模型[J]. 系统工程与电子技术, 2018, 40(10): 2282-2287. |
[10] | 昝翔, 陈春良, 张仕新, 陈伟龙, 张立君. 考虑权重演化的装备重要度动态评估方法[J]. 系统工程与电子技术, 2017, 39(9): 2022-2030. |
[11] | 王运明, 潘成胜, 陈波, 张多平. 基于局域世界的加权指控网络演化模型[J]. 系统工程与电子技术, 2017, 39(7): 1596-1603. |
[12] | 朱林, 方胜良, 胡卿, 骆盛, 樊甫华. 卫星时变拓扑网络节点重要度评估方法[J]. 系统工程与电子技术, 2017, 39(6): 1274-1279. |
[13] | 罗凯, 张明智, 吴曦. 基于作战环的空间信息时效网关键节点分析模型[J]. 系统工程与电子技术, 2016, 38(7): 1572-1576. |
[14] | 周东青, 王星, 程嗣怡, 陈游. 离散粒子群社区检测算法[J]. 系统工程与电子技术, 2016, 38(2): 428-433. |
[15] | 徐雪飞, 李建华, 沈迪, 郭蓉, 杨迎辉. 地空多元复杂网络用频优选模型研究[J]. 系统工程与电子技术, 2016, 38(1): 77-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||