1 |
苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42 (5): 1026- 1034.
|
|
SU J , YANG L , HUANG H , et al. An improved SSD algorithm for small target ship detection in SAR images[J]. Systems Engineering and Electronics, 2020, 42 (5): 1026- 1034.
|
2 |
杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (9): 1990- 1997.
|
|
YANG L , SU J , LI R . SAR ship target detection based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41 (9): 1990- 1997.
|
3 |
胡昌华, 陈辰, 何川, 等. 基于深度卷积神经网络的SAR图像舰船小目标检测[J]. 中国惯性技术学报, 2019, 27 (3): 397- 405. 397-405, 414
|
|
HU C H , CHEN C , HE C , et al. Small target detection of SAR images of ships based on deep convolutional neural network[J]. Chinese Journal of Inertial Technology, 2019, 27 (3): 397- 405. 397-405, 414
|
4 |
WANG R F, XU F Y, PEI J F, et al. An improved faster R-CNN based on MSER decision criterion for SAR image ship detection in harbor[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 1322-1325.
|
5 |
AN Q Z , PAN Z X , YOU H J . Ship detection in Gaofen-3 SAR images based on sea clutter distribution analysis and deep convolutional neural network[J]. Sensors, 2018, 18 (2): 334.
doi: 10.3390/s18020334
|
6 |
JIAO J , ZHANG Y , SUN H , et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6, 20881- 20892.
doi: 10.1109/ACCESS.2018.2825376
|
7 |
KANG M , JI K F , LENG X G , et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9 (8): 860.
doi: 10.3390/rs9080860
|
8 |
HE C , TU M X , XIONG D H , et al. Adaptive component selection-based discriminative model for object detection in high-resolution SAR imagery[J]. International Journal of Geo-Information, 2018, 7 (2): 72.
doi: 10.3390/ijgi7020072
|
9 |
张磊, 洪星, 王岳环, 等. 高分辨率遥感图像投影分析的靠岸舰船检测[J]. 中国图象图形学报, 2018, 23 (9): 1424- 1432.
|
|
ZHANG L , HONG X , WANG Y H , et al. High-resolution remote sensing image projection analysis for docked ship detection[J]. Chinese Journal of Image Graphics, 2018, 23 (9): 1424- 1432.
|
10 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proc. of the IEEE International Confe-rence on Computer Vision, 2017: 764-773.
|
11 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
12 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2021-03-25]. https://arxiv.org/abs/1511.07122.
|
13 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
14 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
|
15 |
ZHAO L Q , LI S Y . Object detection algorithm based on improved YOLOv3[J]. Electronics, 2020, 9 (3): 537.
doi: 10.3390/electronics9030537
|
16 |
DENG H F, CHENG J H, LIU T, et al. Research on iron surface crack detection algorithm based on improved YOLOv4 network[C]//Proc. of the 2nd International Conference on Artificial Intellignece and Computer Science, 2020.
|
17 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proc. of the International Conference on Computer Vision, 2019.
|
18 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
|
19 |
LIN T Y, DOLLA R, PIOTR D, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
|
20 |
WANG C Y , XU C , WANG C H , et al. Perceptual adversarial networks for image-to-image transformation[J]. IEEE Trans.on Image Processing, 2018, 27 (8): 4066- 4079.
doi: 10.1109/TIP.2018.2836316
|
21 |
HE K M , ZHANG X Y , REN S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
|