系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (10): 3072-3082.doi: 10.12305/j.issn.1001-506X.2022.10.10
刘冰凡, 陈伯孝*, 杨明磊
收稿日期:
2020-12-29
出版日期:
2022-09-20
发布日期:
2022-10-24
通讯作者:
陈伯孝
作者简介:
刘冰凡(1993—), 男, 博士研究生, 主要研究方向为MIMO雷达、参数估计、阵列信号处理|陈伯孝(1966—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为干扰对抗、MIMO雷达、末制导雷达、米波三坐标雷达|杨明磊(1980—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为MIMO雷达系统及实现、分布式阵列雷达和极化信息处理
Bingfan LIU, Boxiao CHEN*, Minglei YANG
Received:
2020-12-29
Online:
2022-09-20
Published:
2022-10-24
Contact:
Boxiao CHEN
摘要:
1-bit采样因其低成本、低功耗等优势引起了广泛关注, 本文主要讨论1-bit采样下雷达的脉压性能。首先, 推导了1-bit采样造成的信噪比损失, 分析了1-bit采样的适用条件, 进而发现1-bit采样适合于单次回波信噪比较低的应用场景。接着, 通过理论分析可知相对于高精度脉压系数, 1-bit脉压系数会带来额外的脉压信噪比损失, 但实现方式更为简单。此外, 分析了在高信噪比下, 发射信号为线性调频(linear frequency modulation, LFM)信号时周期性假目标出现的原因, 并且指出相位编码可有效避免假目标出现。仿真实验验证了以上理论推导的正确性。最后, 结合某高频(high frequency, HF) 地波雷达的实测数据验证了1-bit采样的可行性。
中图分类号:
刘冰凡, 陈伯孝, 杨明磊. 1-bit采样下雷达脉压性能分析[J]. 系统工程与电子技术, 2022, 44(10): 3072-3082.
Bingfan LIU, Boxiao CHEN, Minglei YANG. Analysis of radar pulse compression performance under 1-bit sampling[J]. Systems Engineering and Electronics, 2022, 44(10): 3072-3082.
表1
理论脉压峰值"
仿真 | 脉压系数 | 回波信号 | 理论峰值 | |||
SNR≪0 dB | SNR≫0 dB | SNR≪0 dB | SNR≫0 dB | |||
H1 | a | Aa | Aa | |||
H2 | a | |||||
H3 | γa | |||||
H4 |
1 | REN J Y, LI J. One-bit digital radar[C]//Proc. of the Asilomar Conference on Signals, 2017. |
2 | FRANCESCHETTI G , PASCAZIO V , SCHIRINZI G . Processing of Signum coded SAR signal: theory and experiments[J]. Radar & Signal Processing IEE Proceedings F, 1991, 138 (3): 192- 198. |
3 | CAPPUCCINO G, COCORULLO G, CORSONELLO P, et al. Real-time processing of one-bit-coded SAR data[C]//Proc. of the IEEE Electronic Technical Conference, 1996. |
4 |
PASCAZIO V , SCHIRINZI G . Synthetic aperture radar imaging by one bit coded signals[J]. Electronics & Communications Engineering Journal, 1998, 10 (1): 17- 28.
doi: 10.3321/j.issn:1001-506X.1998.01.005 |
5 | FRANCESCHETTI G . Time-domain convolution of one-bit coded radar signals[J]. Radar & Signal Processing IEE Proceedings F, 1991, 138 (5): 438- 444. |
6 |
BAR-SHALOM O , WEISS A J . DOA estimation using one-bit quantized measurements[J]. IEEE Trans.on Aerospace and Electronic Systems, 2002, 38 (3): 868- 884.
doi: 10.1109/TAES.2002.1039405 |
7 |
GAO Y L , HU D S , CHEN Y P , et al. Gridless one-bit DOA estimation exploiting SVM approach[J]. IEEE Communications Letters, 2017, 21 (10): 2210- 2213.
doi: 10.1109/LCOMM.2017.2723359 |
8 |
JACQUES L , LASKA J N , BOUFOUNOS P T , et al. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors[J]. IEEE Trans.on Information Theory, 2013, 59 (4): 2082- 2102.
doi: 10.1109/TIT.2012.2234823 |
9 |
MENG X M , ZHU J . A generalized sparse bayesian learning algorithm for 1-bit DOA estimation[J]. IEEE Communications Letters, 2018, 22 (7): 1414- 1417.
doi: 10.1109/LCOMM.2018.2834904 |
10 |
HUANG X , LIAO B . One-bit MUSIC[J]. IEEE Signal Processing Letters, 2019, 26 (7): 961- 965.
doi: 10.1109/LSP.2019.2913452 |
11 | LIU C L, VAIDYANATHAN P P. One-bit sparse array DOA estimation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 3126-3130. |
12 |
LI Y Z , TAO C , SECO-GRANADOS G , et al. Channel estimation and performance analysis of one-bit massive MIMO systems[J]. IEEE Trans.on Signal Processing, 2017, 65 (15): 4075- 4089.
doi: 10.1109/TSP.2017.2706179 |
13 |
WANG F Y , FANG J , LI H B , et al. One-bit quantization design and channel estimation for massive MIMO systems[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10921- 10934.
doi: 10.1109/TVT.2018.2870580 |
14 | CHOI J , MO J , HEATH R W . Near maximum-likelihood detector and channel estimator for uplink multiuser massive MIMO systems with one-bit ADCs[J]. IEEE Trans.on Commu-nications, 2015, 64 (5): 2005- 2018. |
15 | ZHANG J Y , DAI L L , SUN S Y , et al. On the spectral efficiency of massive MIMO systems with low-resolution ADCs[J]. IEEE Communications Letters, 2015, 20 (5): 842- 845. |
16 |
SHAO Z , LANDAU L T N , DE L R C . Dynamic oversampling for 1-bit ADCs in large-scale multiple-antenna systems[J]. IEEE Trans.on Communications, 2021, 69 (5): 3423- 3435.
doi: 10.1109/TCOMM.2021.3059303 |
17 |
LI A , LIU F , MASOUROS C , et al. Interference exploitation 1-bit massive MIMO precoding: a partial branch-and-bound solution with near-optimal performance[J]. IEEE Trans.on Wireless Communications, 2020, 19 (5): 3474- 3489.
doi: 10.1109/TWC.2020.2973987 |
18 |
LI C X , LI G , VARSHNEY P K . Distributed detection of sparse stochastic signals with 1-bit data in tree-structured sensor networks[J]. IEEE Trans.on Signal Processing, 2020, 68, 2963- 2976.
doi: 10.1109/TSP.2020.2988598 |
19 | GIANELLI C, XU L Z, LI J, et al. One-bit compressive sampling with time-varying thresholds for sparse parameter estimation[C]//Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop, 2016. |
20 | GIANELLI C, XU L Z, LI J, et al. One-bit compressive sampling with time-varying thresholds: maximum likelihood and the Cramér-Rao bound[C]//Proc. of the IEEE 50th Asilomar Conference on Signals, Systems and Computers, 2016. |
21 |
AMERI A , BOSE A , LI J , et al. One-bit radar processing with time-varying sampling thresholds[J]. IEEE Trans.on Signal Processing, 2019, 67 (20): 5297- 5308.
doi: 10.1109/TSP.2019.2939086 |
22 |
JIN B Z , ZHU J , WU Q H , et al. One-bit LFMCW radar: spectrum analysis and target detection[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (4): 2732- 2750.
doi: 10.1109/TAES.2020.2978374 |
23 |
JIN B Z , ZHANG X F , ZHAO B , et al. One-bit LFM pulse radar: harmonic analysis and target reconstruction[J]. IEEE Access, 2019, 7, 109482- 109494.
doi: 10.1109/ACCESS.2019.2933640 |
24 | 吕元浩. 单比特合成孔径雷达稀疏成像技术的研究[D]. 合肥: 中国科学技术大学, 2017. |
LYV Y H. Studies on 1-bit coded synthetic aperture radar sparse imaging[D]. Heifei: University of Science and Techno-logy of China, 2017. | |
25 | 周崇彬. 单比特合成孔径雷达稀疏成像技术的研究[D]. 合肥: 中国科学技术大学, 2016. |
ZHOU C B. Studies on 1-bit coded synthetic aperture radar sparse imaging[D]. Heifei: University of Science and Techno-logy of China, 2016. | |
26 | 赵博, 黄磊, 周汉飞. 基于单频时变阈值的1-bit SAR成像方法研究[J]. 雷达学报, 2018, 7 (4): 446- 454. |
ZHAO B , HUANG L , ZHOU H F . 1-bit SAR imaging method based on single-frequency time-varying threshold[J]. Journal of Radars, 2018, 7 (4): 446- 454. | |
27 | ABRAMOWITZ M , STEGUN I A , MCQUARRIE D A , et al. Handbook of mathematical functions[M]. American: National Bureau of Standard, 1964. |
28 |
LIU B F , CHEN B X , YANG M L . Signal processing of coast-ship bistatic high-frequency surface-wave radar using one-bit quantized measurement[J]. IEEE Access, 2020, 8, 55578- 55591.
doi: 10.1109/ACCESS.2020.2981482 |
29 | 潘孟冠. 稀疏谱高频地波雷达信号处理技术研究[D]. 西安: 西安电子科技大学, 2018. |
PAN M G. Study on signal processing technology of sparse spectrum high frequency ground wave radar[D]. Xi'an: Xidian University, 2018. |
[1] | 裴家正, 黄勇, 陈宝欣, 关键, 陈小龙. 基于线性约束最小方差原则的稳健快速自适应脉冲压缩方法[J]. 系统工程与电子技术, 2022, 44(12): 3621-3630. |
[2] | 降佳伟, 吴彦鸿, 王宏艳, 吴翔宇. 基于多相位分段调制的间歇采样转发干扰[J]. 系统工程与电子技术, 2019, 41(7): 1450-1458. |
[3] | 马晓宇, 赵季中, 卢锦, 郭航. 基于小波变换的雷达目标回波信号提取算法[J]. 系统工程与电子技术, 2019, 41(1): 50-57. |
[4] | 柳向, 李东生, 刘庆林. 基于OS-CFAR的LFM脉压雷达多假目标干扰分析[J]. 系统工程与电子技术, 2017, 39(7): 1486-1492. |
[5] | 赵春雷, 王亚梁, 毛兴鹏, 于长军. 基于压缩感知的高频地波雷达二维DOA估计[J]. 系统工程与电子技术, 2017, 39(4): 733-741. |
[6] | 夏阳, 宋志勇, 卢再奇, 付强. 多载频相位编码雷达信号自适应脉冲压缩方法[J]. 系统工程与电子技术, 2016, 38(9): 2028-2032. |
[7] | 刘根旺1,2, 刘永信1, 纪永刚2,3, 王超2. 基于模糊双门限的高频地波雷达与AIS目标航迹关联方法[J]. 系统工程与电子技术, 2016, 38(3): 557-562. |
[8] | 赵孔瑞, 于长军, 刘爱军, 菅维乐, 权太范. 高频地波雷达飞行目标高度属性判别[J]. 系统工程与电子技术, 2015, 37(9): 2018-2022. |
[9] | 楚晓亮, 张杰, 王曙曜, 纪永刚, 王祎鸣. 高频地波雷达有效波高反演的改进模型[J]. 系统工程与电子技术, 2015, 37(8): 1793-1796. |
[10] | 张鹏程, 王杰贵. 基于DRFM的间歇采样预测转发干扰分析[J]. 系统工程与电子技术, 2015, 37(4): 795-801. |
[11] | 徐雪菲, 廖桂生. 高超声速目标雷达回波脉内运动模型[J]. 系统工程与电子技术, 2015, 37(3): 537-543. |
[12] | 王秀红, 毛兴鹏, 张乃通. 基于CS的脉冲压缩雷达单快拍DOA估计[J]. 系统工程与电子技术, 2014, 36(9): 1737-1743. |
[13] | 张朝霞, 周俊杰, 张明江, 张东泽. 利用组合脉冲解决超宽带雷达中探测盲区问题[J]. 系统工程与电子技术, 2014, 36(8): 1517-1520. |
[14] | 纪永刚, 张杰, 王祎鸣,于长军, 黎明. 双频率高频地波雷达船只目标点迹关联与融合处理[J]. 系统工程与电子技术, 2014, 36(2): 266-271. |
[15] | 王赞, 陈伯孝. 基于压缩感知的高频地波雷达射频干扰抑制[J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1565-1570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||