1 |
XIAO Z Q , ZENG Y . Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40 (6): 1823- 1837.
doi: 10.1109/JSAC.2022.3155509
|
2 |
LIU Y J , LIAO G S , XU J W , et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21 (10): 2174- 2177.
doi: 10.1109/LCOMM.2017.2723890
|
3 |
YU X X , YAO X , YANG J , et al. Integrated waveform design for MIMO radar and communication via spatio-spectral modulation[J]. IEEE Trans.on Signal Processing, 2022, 70, 2293- 2305.
doi: 10.1109/TSP.2022.3170687
|
4 |
ZHANG Y, LI Q Y, HUANG L, et al. Waveform design for joint radar-communication system with multi-user based on MIMO radar[C]//Proc. of the IEEE Radar Conference, 2017: 415-418.
|
5 |
FENG Z Y , FANG Z X , WEI Z Q , et al. Joint radar and communication: a survey[J]. China Communications, 2020, 17 (1): 1- 27.
|
6 |
肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41 (3): 236- 247.
|
|
XIAO B , HUO K , LIU Y X . Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41 (3): 236- 247.
|
7 |
HAN J R, WEI Z Q, MA L, et al. A multiple access method for integrated sensing and communication enabled UAV Ad Hoc network[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2022: 184-188.
|
8 |
ZHANG H B , ZHANG H L , DI B Y , et al. Holographic integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40 (7): 2114- 2130.
doi: 10.1109/JSAC.2022.3155548
|
9 |
QIAN J H , LOPS M , ZHENG L , et al. Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Trans.on Signal Processing, 2018, 66 (13): 3504- 3519.
doi: 10.1109/TSP.2018.2831624
|
10 |
黄鹤. 雷达-通信一体化系统设计[J]. 雷达科学与技术, 2014, 12 (5): 460- 464.
doi: 10.3969/j.issn.1672-2337.2014.05.002
|
|
HUANG H . Design of integrated radar and communication system[J]. Radar Science and Technology, 2014, 12 (5): 460- 464.
doi: 10.3969/j.issn.1672-2337.2014.05.002
|
11 |
TANG A M , WANG X D . Self-interference-resistant IEEE 802. 11ad-based joint communication and automotive radar design[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (6): 1484- 1499.
doi: 10.1109/JSTSP.2021.3118888
|
12 |
ZHENG L , LOPS M , ELDAR Y C , et al. Radar and communication coexistence: an overview: a review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36 (5): 85- 99.
doi: 10.1109/MSP.2019.2907329
|
13 |
JIANG M C , LIAO G S , YANG Z W , et al. Tunable filter design for integrated radar and communication waveforms[J]. IEEE Communications Letters, 2021, 25 (2): 570- 573.
doi: 10.1109/LCOMM.2020.3033119
|
14 |
HUSSAIN I , WU K . Concurrent dual-band heterodyne interferometric receiver for multistandard and multifunction wireless systems[J]. IEEE Trans.on Microwave Theory and Techniques, 2021, 69 (11): 4995- 5007.
doi: 10.1109/TMTT.2021.3099403
|
15 |
CHU J J, LIU R, LIU Y, et al. Joint transmit beamforming design for secure communication and radar coexistence systems[C]// Proc. of the IEEE Wireless Communications and Networking Conference, 2022: 205-209.
|
16 |
LIU C G , CHEN Y F , YANG S H . Deep learning based detection for communications systems with radar interference[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (6): 6245- 6254.
doi: 10.1109/TVT.2022.3158692
|
17 |
ZHENG L , LOPS M , WANG X D , et al. Joint design of overlaid communication systems and pulsed radars[J]. IEEE Trans.on Signal Processing, 2017, 66 (1): 139- 154.
|
18 |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications using phase-rotational invariance[C]// Proc. of the 23rd European Signal Processing Conference, 2015: 1346-1350.
|
19 |
HASSANIEN A , AMIN M G , ZHANG Y D , et al. Dual-function radar-communications: information embedding using sidelobe control and waveform diversity[J]. IEEE Trans.on Signal Processing, 2015, 64 (8): 2168- 2181.
|
20 |
姜孟超, 廖桂生, 杨志伟, 等. 一种NLFM-CPM雷达通信一体化信号设计[J]. 系统工程与电子技术, 2019, 9 (1): 35- 42.
|
|
JIANG M C , LIAO G S , YANG Z W , et al. Signal design for integrated radar and communication based on NLFM-CPM[J]. Systems Engineering and Electronics, 2019, 9 (1): 35- 42.
|
21 |
贺占权, 李晓青, 倪远涵. 基于变速率的高吞吐率LFM-BPSK一体化波形[J]. 计算机应用与软件, 2020, 37 (5): 114- 117.
|
|
HE Z Q , LI X Q , NI Y H . High throughput LFM-BPSK integrated waveform based on variable rate[J]. Computer Applications and Software, 2020, 37 (5): 114- 117.
|
22 |
MULLER E B , SILVA V N H , MONTEIRO P P , et al. Joint optical wireless communication and localization using OFDM[J]. IEEE Photonics Technology Letters, 2022, 34 (14): 757- 760.
doi: 10.1109/LPT.2022.3186734
|
23 |
LI H S. Dual-function multiplexing for waveform design in OFDM-based joint communications and sensing: an edgeworth box framework[C]//Proc. of the IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication, 2022.
|
24 |
GENG Z , XU R H , DENG H , et al. Fusion of radar sensing and wireless communications by embedding communication signals into the radar transmit waveform[J]. IET Radar, Sonar & Navigation, 2018, 12 (6): 632- 640.
|
25 |
YI W , YUAN Y , HOSEINNEZHAD R , et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Trans.on Signal Processing, 2020, 68, 1602- 1617.
doi: 10.1109/TSP.2020.2976587
|
26 |
WU L L , MISHRA K V , SHANKAR M R B , et al. Resource allocation in heterogeneously-distributed joint radar-communications under asynchronous Bayesian tracking framework[J]. IEEE Journal on Selected Areas in Communications, 2022, 40 (7): 2026- 2042.
doi: 10.1109/JSAC.2022.3157371
|
27 |
AHMED A, ZHANG Y D, HIMED B. Distributed dual-function radar-communication MIMO system with optimized resource allocation[C]//Proc. of the IEEE Radar Conference, 2019.
|
28 |
HUANG T Y , SHLEZINGER N , XU X Y , et al. MAJoRCom: a dual-function radar communication system using index modulation[J]. IEEE Trans.on Signal Processing, 2020, 68, 3423- 3438.
doi: 10.1109/TSP.2020.2994394
|
29 |
PENGELLY R , FAGER C , OZEN M . Doherty's legacy: a history of the doherty power amplifier from 1936 to the present day[J]. IEEE Microwave Magazine, 2016, 17 (2): 41- 58.
|
30 |
KATO K, MIWA S, TERANISHI E, et al. A 83-W, 51% GaN HEMT doherty power amplifier for 3.5-GHz-band LTE base stations[C]//Proc. of the IEEE 46th European Microwave Conference, 2016: 572-575.
|
31 |
NARTASILPA N , SALIM A , TUNINETTI D , et al. Communications system performance and design in the presence of radar interference[J]. IEEE Trans.on Communications, 2018, 66 (9): 4170- 4185.
|